首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nanotribology mechanism of alkanethiol self-assembled monolayers (SAM) chemisorbed on a gold surface under a non-flat contact by a tilt plane was studied using molecular dynamics (MD) simulations. The molecular trajectories, tilt angles, normal forces, shear forces, and frictional coefficient of the SAM were evaluated during the friction and relaxation processes for various parameters, including the tilt angle of the slider, interference magnitude, and SAM length. At the nanoscale, the magnitude of interface interactional forces is strongly dependent on the magnitude of the contact area, not on the surface geometry. The contact area and the exerted normal force of the SAM increase with decreasing the tilt angle of the slider at the same contact interference. In contrast, the periods in both normal force and shear force are gradually delayed as the tilt angle of the slider increases. Once the contact interference increases, the normal force and shear force increase together. During the sliding friction process with a smaller tilt slider angle, SAM molecules can maintain a better collective ordered structure. Short SAM molecules are more sensitive to a compressive loading and react to a larger normal force under the same contact interference due to the deformation of a larger tilt angle and decrease in chain length. The friction coefficient of SAM is significantly more dependent on the tilt angle of the slider than the contact interference.  相似文献   

2.
The nanotribology of an alkanethiol self-assembled monolayer (SAM) under tilt contact with a scanning probe tip is studied using molecular dynamics (MD) simulations. The tilt contact is described in terms of the tilt angle and the magnitude of the specimen–tip separation. The effects of tilt angle and magnitude of the specimen–tip separation on the normal force, friction force, friction coefficient, shear strength of the tip–SAM junction, and self-recovery characteristics are evaluated during the scanning probe tip process at a temperature of 300 K. The simulation results clearly show that the magnitudes and periods of the normal force and friction force increase with decreasing magnitude of the specimen–tip separation due to a large change of the tilt angle of the SAM chains during the deformation and recovery stages. For scanning and indentation processes, the effect of the tilt angle of the probe tip on the normal force is more significant than that on the friction force for the SAM. The behaviors of interfacial contact forces, friction coefficient, and shear strength strongly depend on the number of interacting atoms and the contact area, which increases with decreasing magnitude of the specimen–tip separation and increasing tilt angle of the probe tip. The self-recovery of SAM is significantly affected by the magnitude of the specimen–tip separation; the recovery ability of SAM is worse for magnitude of the specimen–tip separation below −0.9 nm with a large tilt angle of the probe tip.  相似文献   

3.
The tribological properties, such as coefficient of friction, adhesion and wear durability of an ultra-thin (<10?nm) dual-layer film on a silicon surface were investigated. The dual-layer film was prepared by dip-coating perfluoropolyether (PFPE), a liquid polymer lubricant, as the top layer onto a 3-glycidoxypropyltrimethoxy silane self-assembled monolayer (epoxy SAM)-coated Si substrate. PFPE contains hydroxyl groups at both ends of its backbone chain, while the SAM surface contains epoxy groups, which terminate at the surface. A combination of tests involving contact angle measurements, ellipsometry, atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) was used to study the physical and chemical properties of the film. The coefficient of friction and wear durability of the film were investigated using a ball-on-disk tribometer (4?mm diameter Si3N4 ball as the counterface at a nominal contact pressure of ~330?MPa). AFM was used to investigate the adhesion forces between a sharp Si3N4 tip and the film. This dual-layer film had a very low coefficient of friction, adhesion and wear when compared to epoxy SAM-coated Si only or bare Si surface. The reasons for the improved tribological performance are explained in terms of the lubrication characteristics of PFPE molecules, low surface energy of PFPE, covalent bonding between PFPE and epoxy SAM coupled with reduced mobile PFPE. The low adhesion forces coupled with high wear durability show that the film has applications as a wear resistant and anti-stiction film for microcomponents made from Si.  相似文献   

4.
ABSTRACT

Interaction forces between solid surfaces are often mitigated by adsorbed molecules that control normal and friction forces at nanoscale separations. Molecular dynamics simulations were conducted of opposing semi-ordered monolayers of united-atom chains on sliding surfaces to relate friction and normal forces to imposed sliding velocity and inter-surface separation. Practical examples include adsorbed friction-modifier molecules in automatic transmission fluids. Friction scenarios in the simulations had zero, one, or two fluid layers trapped between adsorbed monolayers. Sliding friction forces increased with sliding velocity at each stable separation. Lower normal forces were obtained than in most previous nanotribology molecular simulations and were relatively independent of sliding speed. Distinguishing average frictional force from its fluctuations showed the importance of system size. Uniform velocities were obtained in the sliding direction across each adsorbed film, with a gradient across the gap containing trapped fluid. The calculated friction stress was consistent with measurements reported using a surface forces apparatus, indicating that drag between an adsorbed layer and trapped fluid can account sufficiently for sliding friction in friction modifier systems. An example is shown in which changes in molecular organisation parallel to the surface led to a large change in normal force but no change in friction force.  相似文献   

5.
Interfacial adhesion between metals and organic polymers plays a crucial role in the mechanical properties and reliability performance of multiplayer thin film structures. To improve their interfacial bonding strength and so the reliability, the self-assembled monolayer (SAM) method is considered as an effective means. The present study is devoted to studying the effects of SAM coating on the interfacial bonding strength of the Au-epoxy and the Au-Au bonding structures through molecular dynamics (MD) simulation. Three different types of functionalized alkanethiol SAMs (SH(CH2)nX, X = CH3, OH, NH2) chemisorbed onto two different Au crystal planes, i.e., (1 0 0) and (1 1 1), are considered. The study starts from the characterization of the interfacial bonding strength of both the SAM-coated Au-epoxy and Au-Au systems, followed by the investigation of the dependence of the interfacial bonding strength on the chain lengths and tail groups of the n-alkanethiolates. A comparative study of the effects of the crystal orientation of Au substrate on the bonding strength is reported, and the elastic moduli of these SAMs through uniaxial tensile simulation are also examined. The calculated results are compared with the published experimental data, and also with each other to identify the optimal SAM candidate.Results show that the interfacial bonding strength of the SAM-coated Au-epoxy and Au-Au systems exhibits a strong dependency on the crystal orientation of Au substrate and also on the chain length of the monolayer where it tends to increase with an increasing SAM chain length. In specific, the interfacial bonding strength of the SH(CH2)nCH3 SAM-coated Au-Au joint would reach a maximal value at the chain length n = 8 while that of the SAM/epoxy interface in the SH(CH2)nCH3 SAM-coated Au-epoxy system attains a minimal value at n = 4 and becomes the maximum at n = 10, regardless of the crystal orientation of the Au substrates. Besides, the Au substrate with (1 1 1) crystal orientation would outperform the Au(1 0 0) substrate in the SAM/epoxy interfacial bonding strength of the SAM-coated Au-epoxy system while there is a totally opposite result for that of the SAM-coated Au-Au joint.  相似文献   

6.
《Current Applied Physics》2015,15(10):1188-1199
The effect of surface chemical functionalization of a single graphene layer on its thermodynamic work of adhesion (WA) with polyethylene (PE) chains has been investigated using molecular dynamics (MD) simulation. For this purpose, amine (NH2), carboxyl (COOH), hydroxyl (OH), and methyl (CH3) functional groups were distributed randomly throughout the graphene surface using a Monte Carlo (MC) algorithm to achieve graphene functionalized structures with minimized potential energies. The MD simulation results showed that the thermodynamic WA between the PE and the functionalized graphene was larger than that between the PE and the pristine graphene. In fact, the electronegativity of functional groups and Van der Waals forces play influential roles in the thermodynamic WA between the PE and the functionalized graphene. In addition, the amount of thermodynamic WA was increased with increasing the functional group surface density, except for the graphene functionalized with the methyl groups. The segmental density of the PE chains near the single sheet surface was determined based on the density profile calculation. The polymer segments exhibited strong ordering and sharp density variations near the PE/graphene interface. The dynamic of chains was quantitatively characterized by calculating mean square displacement (MSD). Furthermore, the influence of functionality on the glass transition temperature (Tg) of the PE at the PE/graphene interface region was investigated. The results showed that the Tg at the PE/graphene interface was much higher than that of the bulk polymer. In fact, the functionalization of the graphene surface seems to considerably enhance the Tg of the polymer due to lowering the chains mobility.  相似文献   

7.
钱林茂  雒建斌  温诗铸  萧旭东 《物理学报》2000,49(11):2247-2253
使用原子力/摩擦力显微镜,在5%—99%相对湿度范围,研究了二氧化硅和二氧化硅基体上十八烷基三甲氧基硅烷自组装膜(简称OTE SAM/SiO2)表面粘着力随湿度的变化规律.实验表明,二氧化硅表面的粘着力随湿度的增大先逐渐增大,然后急剧减小.相反,OTE SAM/SiO2由于其良好的斥水性,表面的粘着力随湿度的增大基本不变.着重从基本界面力,即表面张力、范德瓦耳斯力和基本键合力的形成与变化,分析了二氧化硅表面粘着力随湿度的增大先增后减的原因,探讨了粘着力的产生机理 关键词: 固体表面的物理性能 分子膜 纳米摩擦学  相似文献   

8.
Frictional properties of organosilane self-assembled monolayers (SAMs) and hydrated silicon oxide (SiOH) surfaces on a single sample substrate were studied; the frictional force difference between the surfaces was measured by employing one as a standard. Using a lateral force microscope (LFM), differential frictional force microscopic data were obtained by measuring the difference in the friction forces of the two surfaces with respect to the vertical load force applied to the LFM probe. The SAMs were prepared from n-octadecyltrimethoxysilane [ODS, H3C(CH2)17Si(OCH3)3], n-(6-aminohexyl) aminopropyltrimethoxysilane [AHAPS, H2N(CH2)6NH(CH2)3Si(OCH3)3], 3,3,3-trifluoropropyltrimethoxysilane [FAS3, F3C(CH2)2Si(OCH3)3] and heptadecafluoro-1,1,2,2-tetrahydro-decyl-1-trimethoxysilane [FAS17, F3C(CF2)7(CH2)2Si(OCH3)3] by chemical vapor deposition. In the vertical force range of 0 to 600 nN, the SAMs showed no damage at all, and frictional force on the SAM surfaces increased linearly with the vertical force. The order of the frictional force magnitudes determined with the SiOH-terminated probe was SiOH > AHAPS > FAS3 > FAS17 > ODS. In addition, the frictional force difference did not become zero even at a vertical force of 0 nN, that is, the frictional differences could even be imaged by LFM through probe-sample adhesion.  相似文献   

9.
Monolayers of protoporphyrin-IX molecules are prepared on a Pt(1 1 1) surface by a self-assembly process in order to manufacture organic devices with controlled electronic properties. Scanning tunnelling microscopy (STM) and two-colour sum-frequency generation (2C-SFG) are performed ex situ in ambient air, in order to characterize their molecular conformation and electronic properties at the monolayer level, respectively. STM measurements performed with functionalized gold tips reveal a high covering rate of the metal surface. 2C-SFG measurements highlight CH stretching modes of vinyl substituted groups (RCHCH2) in the 2800-3200 cm−1 infrared spectral range and particular electronic features in the visible spectral range, i.e. a Soret band red shift and band separation compared to the liquid phase. Moreover, similar measurements are performed on Zn(II)Protoporphyrin-IX and 5-[p-(6-mercaptohexoxy)-phenyl]-10,15,20-triphenylporphin films for comparison. These results suggest a film conformation with the molecules having different tilt angles with respect to the substrate normal, depending on the ion metal presence or the chain length bonded to the porphyrin moiety.  相似文献   

10.
In this study, molecular characteristics of polystyrene (PS) was calculated measuring its dilute-solution properties in toluene at 288.15 K via molecular dynamics (MD) simulations. The solution models consisted of PS chains with different number of repeating units all of which were in a dilute regime. In order to investigate the compatibility between the polymer and the solvent molecules, interaction energy and Flory-Huggins (FH) interaction parameter were estimated. The simulation results indicate that increasing the chain repeating units enhanced the interaction between the solute and the solvent. Additionally, the chain dimensions were evaluated calculating the radius of gyration (Rg) and end-to-end distance, r0. To determine the dynamic behavior of the chains in the solutions, mean square displacement (MSD) and diffusivity coefficient were calculated. The simulation results indicated that the chain rigidity at low molecular weight and chain flexibility with increasing the molecular weight influenced chains dynamic behavior and diffusivity. Moreover, radial distribution function (RDF) illustrated the effect of steric hindrance of the chains in dilute solution on capturing the solvent molecules. In addition, solution viscosity was calculated by performing non-equilibrium molecular dynamics simulation (NEMD). The obtained results of chain characteristics and viscosity showed a good agreement with experimental results published previously. This agreement confirms the accuracy of the applied simulation method to characterize the dilute solutions and the chains characteristics.  相似文献   

11.
Picosecond time‐resolved X‐ray diffraction has been used to study the nanoscale thermal transportation dynamics of bare gold nanocrystals and thiol‐based self‐assembled monolayer (SAM)‐coated integrated gold nanocrystals on a SiO2 glass substrate. A temporal lattice expansion of 0.30–0.33% was observed in the bare and SAM‐coated nanocrystals on the glass substrate; the thermal energy inside the gold nanocrystals was transported to the contacted substrate through the gold–SiO2 interface. The interfacial thermal conductivity between the single‐layered gold nanocrystal film and the SiO2 substrate is estimated to be 45 MW m?2 K?1 from the decay of the Au 111 peak shift, which was linearly dependent on the transient temperature. For the SAM‐coated gold nanocrystals, the thermal dissipation was faster than that of the bare gold nanocrystal film. The thermal flow from the nanocrystals to the SAM‐coated molecules promotes heat dissipation from the laser‐heated SAM‐coated gold nanocrystals. The thermal transportation of the laser‐heated SAM‐coated gold nanocrystal film was analyzed using the bidirectional thermal dissipation model.  相似文献   

12.
The spacing of chemical functional groups on self-assembled monolayers (SAMs) plays an important role in controlling the density of biomolecules in biochips and biosensors. In this sense, a mixed SAM made of two different terminal groups is a useful organic surface since spacing can be easily controlled by changing a relative mole fraction in a mixture solution. In this study, an acetylene-OCH2O(EG)3(CH2)11S-S(CH2)11(EG)3OCH2O-propene (Eneyne) SAM and mixed SAMs made by a mixture of (S(CH2)11(EG)3OCH2O-acetylene)2 (Diyne) and (S(CH2)11(EG)3OCH2O-propene)2 (Diene) were produced on gold substrates and measured by using ToF-SIMS. The secondary ion yield ratio of [Au·S(CH2)11(EG)3OCH2O-acetylene] to [Au·S(CH2)11(EG)3OCH2O-propene] was measured for each mixed SAM and plotted as a function of the mole fraction of Diyne to Diene in a SAM solution. The ion yield ratio of a mixed SAM produced from a solution with a mole fraction of 0.5 (i.e., 1:1 mixture) was 0.3, which corresponded well to the ion yield ratio measured from an Eneyne SAM. A time-dependent experiment of Eneyne SAM formation and immersion experiment of Eneyne SAM into Diyne solution or into Diene solution were performed. The relative ion yield ratio of 0.3 was due to a different secondary ion formation and not due to the difference in the amount of adsorbates on the surface, nor to the different binding strengths onto the gold surface. Our study shows that a mixed SAM with well-controlled spacing can be produced and quantified by using the ToF-SIMS technique.  相似文献   

13.
Chain tilt and surface disorder were investigated in end-deuterated long n-alkane C12D25C192H384C12HD24 crystallized from solution and in n-alkane C162H326 crystallized from melt. Small-angle X-ray scattering and infrared spectroscopy were employed. Extended-chain crystals of C12D25C192H384C12HD24 as-grown from solution have the molecular axis perpendicular to the lamellar surface, but when heated, around 90°C, they start tilting relative to the layer normal. The tilt increases gradually to reach 35° just below the melting point. C162H326 crystallized from the melt at small supercoolings has chains tilted at 35° at the outset, as found previously for all melt-crystallized long alkanes and polyethylene. However, for the first time in long alkanes, it is found that when molten C162H326 is supercooled to ΔT≥10 K, crystals with perpendicular chains form. At still larger ΔT, the chains are once-folded, with a mixed population of tilted and perpendicular chain crystals. The use of Davydov splitting of the CH2 and CD2 bending vibration of the end-labelled alkane C12D25C192H384C12HD24 allows independent IR probing of molecular disorder at the deuterated surface and in the hydrogenous crystal interior. The initially small CD2 splitting and the presence of an additional singlet component indicate a rough surface in as-grown crystals, with considerable longitudinal interchain disorder. It is estimated that about 10% of chains are displaced by up to a dozen C-atoms. The increase in splitting and decrease in absorbance of the singlet, which occur on annealing at progressively higher temperatures, are evidence of steady improvement in translational surface order, occurring simultaneously with increasing chain tilt angle. From the above evidence, it is concluded that the absence of tilt in as-grown crystals is not the result of high surface order, as in the case of shorter odd n-alkanes, but rather of a high frozen-in longitudinal disorder with chain ends or folds protruding out of or sunken beneath the crystal surface. It is also concluded that chain tilt only becomes necessary as the crystal surface becomes translationally more ordered and the crystal–amorphous interface sharpens. The effect of chain tilt on the Davydov splitting is addressed briefly.  相似文献   

14.
Multiply-alkylated cyclopentanes (MACs) with different molecular structure were deposited on single crystal silicon wafers coated with a thin aminopropyltrimethoxylsilane (APS) film as an adhesive layer to form MACs-APS films. The thickness, wetting behavior and nano-scale morphologies of the films were characterized by means of ellipsometry, contact angle measurement, and atomic force microscopy (AFM). The friction and wear behaviors of the thin films sliding against a Si3N4 ball were examined on a UMT-2MT tribometer in a ball-on-disk contact mode. The worn surfaces of the MACs-APS films and the counterpart Si3N4 balls were investigated with a scanning electron microscope (SEM). It was found that the water contact angles on the MACs-APS film increased with the MACs alkyl chain-length. The MACs-APS film exhibited higher load-carrying capacity and better friction reduction and anti-wear behavior as compared with the APS film. This is suggested to occur because the APS acts as a strongly bonded lubricant phase and MACs as a mobile lubricant phase in the MACs-APS film. The increase of the chain-length of the alkyl substituent in the MACs compounds resulted in improved tribological properties of MACs-APS film. It is suggested that the longer alkyl chains are much more flexible and can dissipate the mechanical energy during the shearing process more easily than the short chain compounds. MACs with the longer chains have stronger chain-chain interactions and the larger MAC molecules have stronger intermolecular interactions, resulting in the good tribological properties of MACs-APS film.  相似文献   

15.
The adhesion and friction between pairs of ordered and disordered self-assembled monolayers on SiO2 are studied using molecular dynamics. The disorder is introduced by randomly removing chains from a well ordered crystalline substrate and by attaching chains to an amorphous substrate. The adhesion force between monolayers at a given separation increases monotonically with chain length at full coverage and with coverage for fixed chain length. Friction simulations are performed at shear velocities between 0.02-2 m/s at constant applied pressures between 200 and 600 MPa. Stick-slip motion is observed at full coverage but disappears with disorder. With random defects, the friction becomes insensitive to chain length, defect density, and substrate.  相似文献   

16.
3 -(CH2)21-SH) were investigated by IR-vis sum frequency generation (SFG). Well-ordered monolayers and films with submonolayer coverage with a high number of gauche conformations were prepared on polycrystalline gold substrates. Exposure to a saturated mercury atmosphere induces a major reorganization of the adsorbate phase indicated by a decrease of the average cant angle. Additionally, well-ordered films show an increase of gauche defects upon amalgamation. In contrast, films with submonolayer coverage exhibit an improvement of molecular order. The experiments suggest that amalgamation flattens the corrugation potential of the substrate and yields a separation of the thiol layer into areas of low thiol density with highly disordered alkyl chains and of higher density than on gold with an orientation of the molecules similar to what is observed on silver substrates. Received: 13 November 1998  相似文献   

17.
S. Subramanian  S. Sampath 《Pramana》2005,65(4):753-761
The effect of chain length on the adhesion behaviour of n-alkanethiols CH3(CH2)nSH, wheren = 5, 6, 7, 9, 10, 11, 14 and 15 has been followed by carrying out pull-off force measurement using atomic force microscopy (AFM). The self-assembled monolayers on Au(111) surface has been characterized by reflection absorption infra-red spectroscopy (RAIRS) and contact mode AFM. It is observed that the work of adhesion is independent of thiol chain length though the standard deviation is high for short chain length thiol-based monolayers. This may be attributed to the relatively more deformable nature of the short chain thiol films due to their heterogeneity in the monolayer structure than the long chain ones. This, in turn, increases the contact area/volume between the AFM tip and the monolayer, and hence the force of adhesion. However, in the presence of water, the force of adhesion is lower than that observed in air reflecting the effects of capillary forces/polar components associated with the surface energy.  相似文献   

18.
机械剥离折叠石墨烯粘附与纳米摩擦性质   总被引:1,自引:0,他引:1       下载免费PDF全文
本文用原子力显微镜研究了空气和氮气两种不同气氛环境下的机械剥离石墨烯粘附力,发现氮气环境下的粘附力更小,且石墨烯边缘的粘附力比内部区域大.在氮气环境下探究了折叠石墨烯粘附力与层数的关系及其摩擦性能,结果表明粘附力与折叠石墨烯层数无明显关系,折叠石墨烯各区域的摩擦性能都远超二氧化硅基底,且单层、单层上折叠、双层以及双层上折叠区域的摩擦系数依次降低,分别为0.049,0.031,0.023和0.021,摩擦力也依次降低,折叠处由于层与层之间的结合力弱于相同层数的石墨烯,摩擦性能有所降低,但未发现粘附力与摩擦力之间的明显关系.在采用尖针和球针测量粘附力时,测量历史不会对后续粘附力产生明显影响.对空气环境下出现的新鲜折叠石墨烯的研究表明新鲜折叠石墨烯的折叠区域摩擦力较未折叠区域显著增大.  相似文献   

19.
We have studied self-assembled monolayers (SAMs) of asymmetric dialkyldisulfide derivatives of the form CH3-(CH2)11+m-S-S-(CH2)11-OH with m = −4, −3, 0, +2 and +4 on gold. Sub-nanoscale changes in the length of the CH3-terminated alkylchain have been used to selectively protrude one particular end group in the resulting film. The alteration of the chain length in only two methylene units already results in changes of surface properties, which have been detected with local (chemical force microscopy) and macroscopic (contact angle) techniques. In particular, advancing contact angles can be adjusted between 40° and 80°. The adhesion between a hydrophobic tip and these SAMs in water is determined by the chemical nature of the protruding end group. Chemical force microscopy, X-ray photoelectron spectroscopy and infrared reflection absorption spectroscopy have shown that these SAMs are composed of mixed, well-packed CH3- and OH-alkylthiolate branches. The surface composition ratio is close to 1:1 for all investigated SAMs.  相似文献   

20.
钱林茂  雒建斌  温诗铸  萧旭东 《物理学报》2000,49(11):2240-2246
使用原子力/摩擦力显微镜在5%—99%的相对湿度范围,研究了二氧化硅和二氧化硅基体上十八烷基三甲氧基硅烷自组装膜(简称OTE SAM/SiO2)表面摩擦力和粘着力随湿度的变化规律.实验表明OTE SAM/SiO2不仅能明显改善二氧化硅基体表面的摩擦性能,而且在200nN(接触区Hertz压力约为0.8GPa)的载荷条件下表现出良好的抗磨性能.由于强的亲水性,二氧化硅表面的摩擦力随湿度的增大先逐渐增大,然后急剧减小.相反,OTE SAM/SiO2关键词: 固体表面的物理性能 分子膜 纳米摩擦学  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号