首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new ruthenium-rhodium mixed-metal cluster HRuRh3(CO)12 and its derivatives HRuRh3(CO)10(PPh3)2 and HRuCo3(CO)10(PPh3)2 have been synthesized and characterized. The following crystal and molecular structures are reported: HRuRh3(CO)12: monoclinic, space group P21/c, a 9.230(4), b 11.790(5), c 17.124(9) Å, β 91.29(4)°, Z = 4; HRuRh3(CO)10(PPh3)2·C6H14: triclinic, space group P1, a 11.777(2), b 14.079(2), c 17.010(2) Å, α 86.99(1), β 76.91(1), γ 72.49(1)°, Z = 2; HRuCo3(CO)10(PPh3)2·CH2Cl2: triclinic, space group P1, a 11.577(7), b 13.729(7), c 16.777(10) Å, α 81.39(4), β 77.84(5), γ 65.56°, Z = 2. The reaction between Rh(CO)4? and (Ru(CO)3Cl2)2 tetrahydrofuran followed by acid treatment yields HRuRh3(CO)12 in high yield. Its structural analysis was complicated by a 80–20% packing disorder. More detailed structural data were obtained from the fully ordered structure of HRuRh3(CO)10(PPh3)2, which is closely related to HRuCo3(CO)10(PPh3)2 and HFeCo3(CO)10(PPh3)2. The phosphines are axially coordinated.  相似文献   

2.
The new complex Ru3(CO)9(PPh2H)3 (I) was prepared by the direct thermal reaction of Ru3(CO)12 with PPh2 H and was spectroscopically characterized. Irradiation of I with λ ≥ 300 nm leads to the formation of Ru2(μ-PPh2)2(CO)6 (II) and three new phosphido-bridged complexes, Ru3(μ-H)2(μ-PPh2)2(CO)8 (III), Ru3(μ-H)2(μ-PPh2)2(CO)7(PPh2H) (IV) and Ru3(μ-H)(μ-PPh2)3(CO)7 (V). These complexes have been characterized spectroscopically and Ru3 (μ-H)(μ-PPh2)3(CO)7 by a complete single crystal X-ray structure determination. It crystallizes in the space group P21/n with a 20.256(3), b 22.418(6), c 20.433(5) Å, β 112.64(2)°, V 8564(4) Å3, and Z = 8. Diffraction data were collected on a Syntex P21 automated diffractometer using graphite-monochromatized Mo-Kα radiation, and the structure was refined to RF 4.76% and RwF 5.25% for the 8,847 independent reflections with F0 > 6σ(F0). The structure consists of a triangular array of Ru atoms with seven terminal carbonyl ligands, three bridging diphenylphosphido ligands which bridge each of the RuRu bonds, and the hydride ligand which bridges one RuRu bond. Complex IV was also shown to give V upon photolysis and is thus an intermediate in the photoinduced formation of V from I.  相似文献   

3.
RuHCl(CO)2(PPh3)2 reacts with ethylene under mild conditions (25 psi, 80°C) to yield a propionyl derivative RuCl(C[O]C2H5)(CO)(PPh3)2 which is believed to be coordinatively unsaturated. Unlike the acetyl analogue, RuCl[C[O]C2H5(CO)-(PPh3)2 does not isomerize to RuCl(C2H5)(CO)2(PPh3)2 in solution. Under one atmosphere of carbon monoxide, RuCl(C[O]C2H5(CO)(PPh3)2 exists in equilibrium with two species believed to be RuCl(C[O]C2H5)(CO)2(PPh3)2 and [Ru(C[O]C2H5)(CO)3(PPh3)2]Cl. RuCl(C[O]C2H5)(CO)(PPh3)2 reacts with CO/ AgClO4 to give mer-[Ru(C[O]C2H5)(CO)3(PPh3)2]ClO4, p-tolylisocyanide (RNC) and NaClO4 to give cis-[Ru(C[O]C2H5)(CO)(CNR)2(PPh3)2ClO4, and hydrochloric acid to yield the hydroxycarbene complex, RuCl2(CO)(C[OH]C2H5)(PPh3)2.  相似文献   

4.
A high-yield synthesis of trans-RuCl2(CS)(H2O)(PPh3)2 from RuCl2(PPh3)3 and CS2 is described. The coordinated water molecule is labile, and introduction of CNR (R  p-toyl or p-chlorophenyl) leads to yellow trans-RuCl2(CS)(CNR)(PPh3)2, which isomerises thermally to colourless cis-RuCl2(CS)(CNR)(PPh3)2. Reaction of AgClO4 with cis-RuCl2(CS)(CNR)(PPh3)2 gives [RuCl(CS)(CNR)(H2O)(PPh3)2]+, from which [RuCl(CS)(CO)(CNR)(PPh3)2]+ and [RuCl(CS)(CNR)2(PPh3)2]+ are derived. Reaction of trans-RuCl2(CS)(H2O)(PPh3)2 with sodium formate gives Ru(η2-O2CH)Cl(CS)(PPh3)2, which undergoes decarboxylation in the presence of (PPh3) to give RuHCl(CS)(PPh3)3. Ru(η2-O2CH)H(CS)(PPh3)2 and Ru(η2-O2CMe)-H(CS)(PPh3)2 are also described.  相似文献   

5.
Detailed procedures for the syntheses of Os(CO)2(PPh3)3, Os(CO)(CNR)-(PPh3)3 (R = p-tolyl), Os(CO)(CS)(PPh3)3 and Os(CS)(CNR)(PPh3)3, together with the derived complexes Os(CO)2(CS)(PPh3)2, Os(CO)(CS)(CNR)(PPh3)2, Os(η2-C2H4)(CO)(CNR)(PPh3)2, Os(η2-C2H4)(CO)(CS)(PPh3)2, Os(η2CS2)(CO)2-(PPh3)2, Os(η2CS2)(CO)(CS)(PPh3)2, Os(η2-CS2)(CO)(CNR)(PPh3)2, Os(η2PhC2Ph)(CO)2(PPh3)2 and OsH(C2Ph)(CO)2(PPh3)2 are described.  相似文献   

6.
The reactions of the heterometallic cluster Cp*IrOs3(μ-H)2(CO)10 with phosphines, isonitriles and pyridine under TMNO activation afforded the substitution products Cp*IrOs3(μ-H)2(CO)10−nLn (n = 1, 2; L = PPh3, P(OMe)3, tBuNC, CyNC or py) in good yields. For the monosubstituted derivatives, the substitution site was exclusively at an osmium atom in an axial position for L = phosphine or phosphite. Spectroscopic evidence suggested the presence of isomers in solution for the PPh3 derivative. In contrast, for L = isonitrile, the ligand occupied an equatorial site. In the disubstituted derivatives, the group 15 ligands were coordinated to two different osmium atoms, one each at an axial and an equatorial site. The isomerism and fluxional behaviour of some of these clusters have also been examined.  相似文献   

7.
The reactivity of [Pt2(μ-S)2(PPh3)4] towards [RuCl26-arene)]2 (arene=C6H6, C6Me6, p-MeC6H4Pri=p-cymene), [OsCl26-p-cymene)]2 and [MCl25-C5Me5)]2 (M=Rh, Ir) have been probed using electrospray ionisation mass spectrometry. In all cases, dicationic products of the type [Pt2(μ-S)2(PPh3)4ML]2+ (L=π-hydrocarbon ligand) are observed, and a number of complexes have been prepared on the synthetic scale, isolated as their BPh4 or PF6 salts, and fully characterised. A single-crystal X-ray structure determination on the Ru p-cymene derivative confirms the presence of a pseudo-five-coordinate Ru centre. This resists addition of small donor ligands such as CO and pyridine. The reaction of [Pt2(μ-S)2(PPh3)4] with RuClCp(PPh3)2 (Cp=η5-C5H5) gives [Pt2(μ-S)2(PPh3)4RuCp]+. In addition, the reaction of [Pt2(μ-S)2(PPh3)4] with the related carbonyl complex [RuCl2(CO)3]2, monitored by electrospray mass spectrometry, gives [Pt2(μ-S)2(PPh3)4Ru(CO)3Cl]+.  相似文献   

8.
Thermal degradation of the cluster compound Os3(CO)8(PPh2H)(μ3-S)2 (I) at 125°C leads to decarbonylation and formation of the new ligand bridged hexanuclear cluster Os6(CO)14(μ-PPh2)23-S)34-S) (II) in 11% yield. Space Group: P1, No. 2, a 10.427(5), b 13.552(3), c 17.919(3) Å, α 84.87(2), β 75.41(3), γ 78.43(3)°, V 2399(2) Å3Z = 2, ?calc 2.82 g cm?3. The structure was solved by the heavy atom method and refined (3223 reflections) to the final residuals R = 0.042 and Rw = 0.036. The molecule consists of two sulfido bridged open triosmium clusters which are linked by a bridging sulfido ligand and a bridging diphenylphosphino ligand.  相似文献   

9.
Reaction between Os(CO)2(PPh3)3 and Me3SnH produces Os(SnMe3)H(CO)2(PPh3)2 (1). Multinuclear NMR studies of solutions of 1 reveal the presence of four geometrical isomers, the major one being that with mutually cis triphenylphosphine ligands and mutually trans CO ligands. Os(SnMe3)H(CO)2(PPh3)2 undergoes a redistribution reaction, at the trimethylstannyl ligand, when treated with Me2SnCl2 giving Os(SnMe2Cl)H(CO)2(PPh3)2 (2). Solutions of 2 again show the presence of four isomers but now the major isomer is that with mutually trans triphenylphosphine ligands and mutually cis CO ligands. The redistribution reaction of 1 with SnI4 produces Os(SnMeI2)H(CO)2(PPh3)2 (3) which exists in solution as only one isomer, that with mutually trans triphenylphosphine ligands and mutually trans CO ligands. Treatment of 3 with I2 cleaves the Os-H bond with retention of geometry giving Os(SnMeI2)I(CO)2(PPh3)2 (4). The crystal structure of 4 has been determined. No isomerization of the trans dicarbonyl complex 4 occurs when 4 is heated, instead there is a formal loss of “MeSnI” and formation of OsI2(CO)2(PPh3)2 (5).  相似文献   

10.
The reaction of IrH3(PPh3)2 with p-substituted aryldiazonium salts gives the compounds [IrH2(NHNC6H4R)(PPh3)2]+BF4- at low temperature (-10°C) and the o-metalated complexes [IrH(NHNC6H3R)(PPh3)2]+BF4- (R  F, OCH3) at 40–50°C. The reactions of the o-metalated complexes with CO, PPh3, NaI and HCl have been studied.  相似文献   

11.
Ligand substitution of the mixed-metal clusters FeRu2(CO)12 and Fe2Ru(CO)12 with triphenylphosphine and trimethylphosphite has been studied. Mono- and di-substituted derivatives have been synthesized and characterized structurally. The following crystal and molecular structures are reported: Fe2Ru(CO)11PPh3: triclinic, space group P1, a 9.203(2), b 11.903(3), c 15.117(4) Å, α 81.54(2), β 87.28(2), γ 66.72(2)°, Z = 2; Fe2Ru(CO)11P(OMe)3: orthorhombic, space group Pna21, a 17.220(5), b 14.572(4), c 8.708(6) Å, Z = 4, FeRu2(CO)11PPh3: monoclinic, space group P21/n, a 11.435(3), b 16.034(5), c 16.642(4) Å, β 93.35(2)°, Z = 4; FeRu2(CO)10(PPh3)2: orthorhombic, space group Pccm, a 14.854(4), b 17.180(7), c 16.786(12) Å, Z = 4.Ligand substitution is found to occur preferentially at the ruthenium centers of the FeRu2 and Fe2Ru clusters. Monosubstitution causes expansion of both of the clusters while the overall geometry is practically unchanged. Disubstitution of FeRu2(CO)12 causes contraction of the cluster and leads to a formation of carbonyl bridges. The structural trends have been interpreted in terms of electronic and packing effects of ligand substitution. The X-ray structures of Fe2Ru(CO)12 and FeRu2(CO)12 are not known; the ligand substitution studies indicate that Fe2Ru(CO)12 has the same structure as Fe3(CO)12, and that FeRu3(CO)12 does not have a Ru3(CO)12 structure as postulated previously from the IR studies.  相似文献   

12.
Although very bulky ligands e.g.(o-MeC6H4)3E or (μ-C10H7)3E (E = P or As) are inert, the normal photochemical or thermal reaction of tertiary phosphines or arsines, L, with [Mn2(CO)10] is CO substitution with the formation of [Mn2(CO)8(L)2] derivatives (I). At elevated temperatures some triarylarsines, R3As, undergo Lambert's reaction with ligand fragmentation to give [Mn2(CO)8(μ-AsR2)2] complexes (II) (R = Ph, p-MeOC6H4, p-FC6H4, or p-CIC6H4) even though, in the absence of [Mn2(CO)10] R3As are stable under the same conditions. Exceptional behaviour is exhibited by (p-Me2NC6H4)3- As which forms a product of type I; by some HN(C6H4)2AsR which give a product of type II as a result of loss of the non-aryl groups R = PhCH2, cyclo-C6H11, or MeO; and by Ph(α-C10H72P which is the only phosphine to form a product of type II, albeit in trace amounts only. The thermal decomposition of a n-butanol solution of [Mn2(CO)8(AsPh3)2] in a sealed tube gives C6H6 and [Mn2(CO)8(α-AsPh2)2], whilst in an open system in the presence of various tertiary phosphines, L, [Mn(H)(CO)3(L)2] are obtained. It is suggested that Lambert's reaction is a thermal fragmentation of [Mn(CO)4(AsR3]* radicals, the first to be recognised. They lose the radical R* which abstracts hydrogen from the solvent. The resulting [Mn(CO)4(AsR2)] moiety dimerises to [Mn2(CO)8-(α-AsR2)2]. the reaction is facilitated by the stability of the departing radical (e.g. PhCH2 or MeO) and, as the crowding about As is relieved, by its size (e.g. Ph, cyclo-C6H11, o-MeC6H4, or α-C10H7). In general, phosphine-substituted radicals [Mn(CO)4(PR)3]* do not undergo this decomposition, probably because the PC bonds are much stronger than AsC.  相似文献   

13.
Ph2P(O)C(S)N(H)R (R  Me, Ph) reacts with M(CO)35-C5H5)Cl (M  Mo, W) in the presence of Et3N to give M(CO)25-C5H5)(Ph2P(O)C(S)NR). The deprotonated ligand coordinates in a bidentate manner through N and S to give a four-membered ring system. M(CO)3(PPh3)2Cl2 (M  Mo, W) reacts with Ph2P(O)C(S)N(H)R (R  Me, Ph) in the presence of Et3N to give complexes in which the central metal atoms are seven coordinate through two ligands bonded via O and S to form five-membered ring systems, one PPh3, and two CO groups. The complexes were characterised by elemental analyses, IR, 1H NMR, and 31P NMR spectroscopy, and an X-ray structural analysis of Mo(CO)2(PPh3)(Ph2P(O)C(S)NPh)2 · CH2Cl2.  相似文献   

14.
A reinvestigation of the reaction of Ir(CO)Cl(PPh3)2, 1 with HSnPh3 has revealed that the oxidative-addition product Ir(CO)Cl(PPh3)2(H)(SnPh3), 2 has the H and SnPh3 ligands in cis-related coordination sites. Compound 2 reacts with a second equivalent of HSnPh3 by a Cl for H ligand exchange to yield the new compound H2Ir(CO)(SnPh3)(PPh3)2, 3. Compound 3 contains two cis- related hydride ligands. Under an atmosphere of CO, 1 reacts with HSnPh3 to replace the Cl ligand with SnPh3 and one of the PPh3 ligands with a CO ligand and also adds a second equivalent of CO to yield the 5-coordinate complex Ir(CO)3(SnPh3)(PPh3), 4. Compound 4 reacts with HSnPh3 by loss of CO and oxidative addition of the Sn-H bond to yield the 6-coordinate complex HIr(CO)2(SnPh3)2(PPh3), 5 that contains two trans-positioned SnPh3 ligands.  相似文献   

15.
The olefinic tertiary phospine complex Ru3(CO)10(μ-η2, P-CH2CHC6H4PPh2) is converted to the title μ4-alkyne-Ru4 cluster at 135°C; the latter is also formed from H2Ru332, P-HCCC6H4PPh2)(CO)8 and Ru3(CO)12. Crystals of the Ru4 complex are monoclinic, space group P21, with a 8.700(3), b 17.611(3), c 11.926(2) Å, β 102.720(3)°, with Z = 2; 1702 data (I > 2.5 (σ)I) were refined to R = 0.026, Rw = 0.028. The molecule contains a distorted octahedral Ru4C2 core, one carbon of which is attached to an o-C6H4PPh2 moiety coordinated via P to a wing-tip Ru of the Ru4 butterfly.  相似文献   

16.
UV irradiation of [Et4N] [V(CO)6] in the presence of the tripod ligands (L) MeC(CH2PPh2)3 (cp3) and P(CH2CH2PPh2)3 (pp3) yields [Et4N] [V(CO)5L], cis-[Et4N] [V(CO)4L] and mer-[Et4N] [V(CO)3L] (where the meridional configuration for L = cp3 is uncertain). Except for [Et4N] [V(CO)5cp3], all these species were isolated. The complexes are characterized by their IR, 31P and 51V NMR spectra.  相似文献   

17.
The thiocarbonyl-bridged complex Cp2Fe2(CO)3CS is obtained by the reaction of CpFe(CO)2? and (PhO)2CS in THF. Infrared and NMR spectra show that the compound exists in solution in interconverting cis and trans forms, but that the isomerization occurs more slowly than for the carbonyl analog [CpFe(CO)2]2. Most reagents which cleave [CpFe(CO)2]2, such as Br2, HgCl2, and O2/HBF4, do not give simple cleavage reactions with Cp2Fe2(CO)3CS. Reductive cleavage of Cp2Fe2(CO)3CS with Na(Hg) gives the thiocarbonyl anion CpFe(CO)(CS)?, which reacts with Ph3SnCl to form CpFe(CO)(CS)SnPh3. Methylamine reacts with CpFe(CO)(CS)SnPh3 to give CpFe(CO)(CNMe)SnPh3, while ethylenediamine gives the carbene complexes CpFe(CO)C(N2C2H6)SnPh3. The preparation of another new carbene complex, [CpFe(CO)2C(OMe)2]PF6, is also described.  相似文献   

18.
Fe3Te2(CO)9 is shown to be a useful precursor to a variety of heterometallic carbonyl clusters in reactions which appear to proceed via the intermediacy of Fe2(Te2)(CO)6. Fe3Te2(CO)9 decomposed in polar solvents to give Fe2(Te2)(CO)6 which could be dimerized to Fe4Te4(CO)12. Fe3Te2(CO)9 reacted with C5H5Co(CO)2 and Pt(C2H4)(PPh3)2 to give good yields of (C5H5CO)Fe2Te2(CO)7 and Fe2PtTe2(CO)6(PPh3)2, respectively. (C5H5Co)Fe2Te2(CO)7 underwent reversible decarbonylation to give a mixture of two isomers of (C5H5Co)Fe2Te2(CO)6 as established by 125Te NMR spectroscopy. Upon reaction with Co2(CO)8, Fe3Te2(CO)9 gave Co2FeTe(CO)9 or Co4Te2(CO)11 depending on the reaction conditions. Co4Te2(CO)11, like Fe3Te2(CO)10 and (C5H5Co)Fe2Te2(CO)7, can be reversibly decarbonylated. The assembly of Co2FeTe(CO)9 may be mechanistically related to the conversion of Fe2(S2)(CO)6 to FeCo2S(CO)9 which was found to proceed via Co2Fe2S2(CO)11. Alternatively, Co2Fe2S2(CO)11 reacted photochemically with [C5H5Mo(CO)3]2 to give the known, chiral cluster (C5H5Mo)CoFeS(CO)8. While Fe2(Te2)(CO)6 thermally dimerized to Fe4Te4(CO)12, Fe2(S2)(CO)6 gave the analogous dimer only upon photolysis. In contrast to the stability of (C5H5CO)Fe2Te2(CO)7, the reaction of C5H5Co(CO)2 with Fe2(S2)(CO)6 gave only (C5H5CO)Fe2S2(CO)6 which is proposed to be structurally related to Fe3S2(CO)9 and not (C5H5Co)3S2 or Fe2PtS2(CO)6(PPh3)2.  相似文献   

19.
The dithiocarbene complex W(CO)5[C(SCH3)2 reacts with tertiary phosphines, PPh2CH3, PPh(CH3)2, P(C2H5)3 and P(OCH3)3 to form the phosphorane complexes W(CO)5[CH3S)2C-PR3] and with HPPh2 to form the phosphine complex W(CO)5[PPh2[CH(SCH3)2]. Kinetic studies of both types of reactions show that their rates are first order each in W(CO)5[C(SCH3)2] and in the phosphorus ligand. A mechanism involving rate determining phosphorus attack at the carbene carbon followed by rapid rearrangement to the product is consistent with this rate law. Rate constants for the reactions increase with increasing nucleophilicities of the phosphines: P(OCH3)3 < PPh2H < PPh2CH3 ? PPh(CH3)2 < P(C2H5)3. The ΔH values decrease (P(OCH3)3 > PPh2H > PPh2(CH3) > PPh(CH3)2 > P(C2H5)3) as the nucleophilicities of the phosphines increase. The ΔS values (≈-30 e.u.) remain essentially constant for all the reactions. The cyclic dithiorcarbenes W(CO)5[CS(CH2)nS], wheren- 3 or 4, react with PPh2(CH3) to form the cyclic phosphorane complexes, W(CO)5[S(CH2)nSC-PPh2(CH3)]. The 6- and 7- membered cyclic dithiocarbenes also react with PPh2H to form the phosphine complexes, W(CO)5 {PPh2- [CS(CH2)nS(H)]}.  相似文献   

20.
The thiocarbonyl analogue of Vaska’s compound is produced in high yield by first treating IrCl(CO)(PPh3)2 with CS2 and methyl triflate to give [Ir(κ2-C[S]SMe)Cl(CO)(PPh3)2]CF3SO3 (1), secondly, reacting 1 with NaBH4 to give IrHCl(C[S]SMe)(CO)(PPh3)2 (2), and finally heating 2 to induce elimination of both MeSH and CO to produce IrCl(CS)(PPh3)2 (3). When IrCl(CS)(PPh3)2 is treated with Hg(CHCHPh)2 the novel 2-iridathiophene, Ir[SC3H(Ph-3)(CHCHPh-5)]HCl(PPh3)2 (4) is produced. The X-ray crystal structure of the iodo-derivative of 4, Ir[SC3H(Ph-3)(CHCHPh-5)]HI(PPh3)2 (5) confirms the unusual 2-metallathiophene structure. Treatment of IrCl(CS)(PPh3)2 with Hg(CHCPh2)2 produces both a coordinatively unsaturated 1-iridaindene, Ir[C8H5(Ph-3)]Cl(PPh3)2 (6) and a chelated dithiocarboxylate complex, Ir(κ2-S2CCHCPh2)Cl(CHCPh2)(PPh3)2 (7). X-ray crystal structure determinations for 6 and 7 are reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号