首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The reaction of Ir4(CO)12 with t-BuNC or MeNC in the presence of trimethylamine oxide in refluxing tetrahydrofuran provides the substituted iridium clusters Ir4(CO)12-x(RNC)x] (χ  14; R  t-Bu, Me). The infrared and 13C NMR spectra of these molecules indicate that most of them adopt structures related to Ir4(CO)12, i.e., they have only terminal carbonyl ligands. The variable temperature 13C NMR spectra for Ir4(CO)11(t-BuNC) establish a carbonyl scrambling process which is the formal inverse of the C3vTd scrambling mechanism proposed for Rh4(CO)12. The kinetics of substitution of Ir4(CO)12 by t-BuNC have been studied. Each substitution step occurs by a ligand-dependent, overall second-order reaction at a rate much greater than for substitution by PPh3. The observed differences between t-BuNC and PPh3, can be rationalized on the basis of steric differences between the two ligands.  相似文献   

2.
Reactions between t-BuNC and Ru3(CO)12 or H4Ru4(CO)12 afford Ru3(CO)12?n(CNBu-t)n (n = 1, 2 or 3) and H4Ru4(CO)12?n(CNBu-t)n (n = 1, 2 or 4), respectively; an X-ray diffraction study of the molecular structure of Ru3(CO)11(CNBu-t) shows the isocyanide ligand to occupy an axial position, while from the 13C NMR spectrum, all CO groups are equivalent at low temperatures.  相似文献   

3.
The use of dimeric [RhCl(CO)2]2 as acceptor unit in the construction of mono-, bi- and three-dimensional metallosupramolecular structures is reported.The reaction of the dimer with the alkynylgold complex [Au(CCC5H4N)(CNC6H4O(O)CC6H4OC10H21)] resulted in the mononuclear rhodium complex 1, through an unexpected transfer of the isonitrile ligand from the gold to the rhodium centres.The reaction of the linear unit [RhCl(CO)2]2(μ-4,4′-bipy) (3) with the diphosphine 1,4-bis(diphenylphosphino)butane (dppb) yielded the simultaneous formation of both metallomacrocycles [RhCl(CO)(dppb)]2 (4) and {[RhCl(CO)]2(μ-4,4′-bipy)}2(μ-dppb)2 (5). The use of a diphosphine with smaller bite angle, 1,1′-bis-(diphenylphosphino)methane, (dppm) formed the three-dimensional {[RhCl(CO)]2(μ-4,4′-bipy)}2(μ-dppm)4 complex (6) that incorporates four diphosphine units connecting two [RhCl(CO)2]2(μ-bipy) linear edges. PM3 semi-empirical method has been used to calculate the optimised geometry of compound 6.  相似文献   

4.
The halogen bridged binuclear complexes of rhodium(I) [RhCl(CO)(PR3)]2 undergo oxidative addition with methyl halides to yield the complexes [RhCl(CO)(PR3)(Me)(X)]2 (X = Cl, Br). The crystal and molecular structures of [RhCl(CO)(PMe2Ph)(Me)(Br)]2 have been determined from a single crystal by use of X-ray crystallographic methods. The space group is Pca21 or Pacm with a 19.501(5), b 10.381(4), c 13.641(5) e? Z = 4. Parameters of 30 nonhydrogen atoms in the space group Pca21 were refined by the full-matrix least squares technique to a conventional R factor of 0.073. In a binuclear unit, each rhodium atom is in an octahedral environment being bonded to a carbonyl group, a methyl group and a tertiary phosphine ligand and three halogen atoms for which, due to a disorder phenomenon, the diffusion factors have been determined as the average between those of chlorine and bromine atoms. In solution the cis-migration of the methyl groups occurs, leading to the acetyl complexes. In the case of CH3I, it is shown that an equilibrium is present in solution: [RhCl(CO)(PR3(Me)(I)]2 ? [RhCl(COMe)(PR3)(I)(solvant)]2] Carbonylation reactions shift this equilibrium to give the complexes [RhCl(CO)(COMe)(PR3(I)]2. Such complexes are readily prepared by direct oxidative addition of acyl halides to the compounds [RhCl(CO)(PR3)]2.  相似文献   

5.
Reaction of Ru(CO)Cl(CHCHR)(PPh3)2 or Ru(CO)Cl(CHCHR)(PPh3)2L (L = py, Me2Hpz) with 1 equivalent of t-butyl isocyanide gives the alkenyl derivatives Ru(CO)Cl(CHCHR)(PPh3)2(t-BuNC). When an excess of isocyanide is used, further reaction results in intramolecular CO insertion to yield η1-acyl complexes [Ru(COCHCHR) (t-BuNC)3(PPh3)2]Cl. Related complexes were obtained from [Ru(CO)(CHCHR)(MeCN)2(PPh3)2]PF6 and an excess of isocyanide.  相似文献   

6.
The reaction between η5-C5H5M(CO)3I (M  Mo, W) and isonitriles, RNC, (RNC  PhCH2NC, t-BuNC and 2,6-dimethylphenylisocyanide (XyNC)) is catalysed by the dimer [η5-C5H5M(CO)3]2 (M = Mo, W) to yield η5-C5H5M(CO)3?n(RNC)nI (n = 1–3) and [η5-C5H5Mo(RNC)4]I. The complexes (η5-C5H5)2Mo2(CO)6?n(RNC)n (n = 1, RNC = MeNC, PhCH2NC, XyNC, t-BuNC; n = 2, RNC = t-BuNC) have been prepared in moderate yield from the direct reaction between [η5-C5H5Mo(CO)3]2 and RNC, and also catalyse the above reaction. A reaction pathway involving a fast non-chain radical mechanism and a slower chain radical mechanism is proposed to account for the catalysed reaction.  相似文献   

7.
The new N‐heterocyclic carbene (NHC) precursors 4, ‐dicyano‐1, ‐dimesityl‐ ( 9 ) and 4, 5‐dicyano‐1, 3‐dineopentyl‐2‐(pentafluorophenyl)imidazoline ( 14 ) were synthesized. The structure of 9 could be determined by X‐ray crystallography. With the 2‐pentafluorophenyl‐substituted imidazolines 9 and 14 , the [AgCl(NHC)], [RhCl(COD)(NHC)], and [RhCl(CO)2(NHC)] complexes [NHC = 4, 5‐dicyano‐1, 3‐dimesitylimidazol‐2‐ylidene ( 3 ) and 4, 5‐dicyano‐1, 3‐dineopentylimidazol‐2‐ylidene ( 4 )] were obtained. Crystal structures of [AgCl( 3 )] ( 15 ), [RhCl(COD)( 3 )] ( 17 ), [RhCl(COD)( 4 )] ( 18 ), and [RhCl(CO)2( 3 )] ( 19 ) were solved and with the crystal data of 19 , the percent buried volume ( %Vbur) of 31.8(±0.1) % was determined for NHC 3 . Infrared spectra of the imidazolines 9 and 14 and of the complexes 15 – 20 were recorded and the CO stretching frequencies of complexes 19 and 20 were used to determine the Tolman electronic parameters of the newly obtained NHCs 3 (TEP: 2060 cm–1) and 4 (TEP: 2061 cm–1), thus proving that 1, 3‐substitution of maleonitrile‐NHCs does not have a significant effect for the high π‐acceptor strength of these carbenes.  相似文献   

8.
The preparation of a series of complexes of the types [RhCl(CO)2(L)], [RhCl(cod)(L)] and [Rh(cod)(L)2]ClO4, where L is a ligand incorporating a ferrocenyl group and a pyridine ring is described. Complexes were characterized using NMR, IR and electronic spectroscopy. The electrochemical behaviour of the complexes was examined using cyclic voltammetry. The X-ray structures of three of the complexes, [RhCl(CO)2{NC5H4CNC6H45-C5H4)Fe(η5-C5H5)}], [RhCl(cod)(3-Fcpy)] and [RhCl(cod){3-Fc(C6H4)py}], were determined.  相似文献   

9.
The indan derived diphosphine, cis-1,3-(diphenylphosphino)indan (anphos) is synthesised by the addition of Ph2P(BH3)Li to cis-1,3-dibromoindan followed by deprotection with diethylamine. Anphos readily forms the bicyclic chelates [RhCl(CO)(anphos)], [PtCl2(anphos)], [PtCl(Me)(anphos)] and [FeCl2(anphos)]. The crystal structures of [FeCl2(anphos)] and the monoxide complex, [RhCl(CO)(anphosO)] have been determined. Reaction of the diphosphine with [Rh(acac)(CO)2] under moderate hydroformylation conditions catalysed the formation of 1-heptanal and branched aldehydes from 1-hexene in a ratio of 1.5:1.  相似文献   

10.
Rh2(CO)4(OR)2 complexes (R = Me, Et, Pr, i-pent, Ph, p-chlorophenyl) were prepared from Rh2(CO)4Cl2 and sodium alcoholates or phenolates. They are converted by phosphines into the monomeric Rh(CO)(PR′3)2(OR) derivatives (R′ = Bu, Ph) via Rh2(CO)3(PR′3)(OR)2 intermediates.  相似文献   

11.
Alternative Ligands. XXII. Rhodium(I) complexes with Donor/Acceptor Ligands of the Typs Me2PCH2CH2SiXnMe3?n(X = F, Cl, OMe) Donor/acceptor ligand of the type Me2PCH2SiXnMe3?n react with [Rh(CO)2Cl]2 ( 1 ) to give the mononuclear complexes RhCl(CO)(PMe2CH2CH2SiXnMe3?n)2 ( 2-6 , Table 1) with planar geometry of the donor atoms, one exception being Me2PCH2CH2CH2SiCl3, yielding the crystalline RhIII-complex RhCl2(CO)(PMe2CH2CH2SiCl2)(PMe2CH2CH2SiCl3) ( 7 ) by oxidative addition of one of the SiCl bonds to the Rh1 precursor. Structures with Rh → Si interaction between the basic central atoms and the acceptor group SiXnMe3?n could be detected in the isolated products neither spectroscopically nor by X-ray diffraction of the two representatives RhCl(CO)(PMe2CH2CH2SiF3)2 ( 2 ) and RhCl(CO)[PMe2CH2CH2siF3]2 ( 2 ) and RhCl(CO) [PMe2CH2CH2Si(OMe3]2 ( 6 ). The presence of such acid/base adducts in the reaction mixture is indicated for the more acidic acceptor groups SiXnMe3?n byvco values near 1990cm?1, (see Table 3). The complex RhCl(CO)PMe3)(PMe2CH2CH2SiF3 ( 8 ) is obtained by the reaction of RhCl(CO)(PMe3)2 ( 9 ) with Me2PCH2SiF3 and has been identified spectroscopically in a mixture with 2 and 9 .  相似文献   

12.
Trans-[RuPy4(CN)2 cleaves chloro-rhodium bridges in rhodium(I) binuclear complexes, [Rh(CO)2Cl]2, [Rh(Cod)Cl]2, and [(Cod)RhCl2Rh(CO)2] yielding heterometallic triad complexes, [(CO)2ClRh(NC)RuPy4(CN)RhCl(CO)2] (I), [(Cod)ClRh(NC)RuPy4(CN)RhCl(Cod)] (II), and [(Cod)ClRh(NC)RuPy4(CN)RhCl(CO)2] (III), respectively. In solutions, III coexists with equilibrium amounts of I and II in the near-binomial proportions. Under action of [Rh(CO)2Cl]2, II transforms into I with parallel formation of [Rh(Cod)Cl]2. Ligand effect transmission along the L-Rh-NC-Ru-CN-Rh-L′ chain is studied by 1H and 13C NMR. Chemical shifts δ1H and δ13C of Ru-bound Py ligands are sensitive to the nature of Rh-bound ligands. Values of δ1H and δ13C of Cod and 13C of CO ligands are sensitive to the ligands at the remote end of the L-Rh-NC-Ru-CN-Rh-L′ chain. Reaction of trans-[RuPy4(CN)2] with Rh2(OAc)4 yields an apparently linear polymer [-Rh(OAc)4Rh-NCRuPy4CN-]. Upon action of [Rh(CO)2Cl]2, the polymer decomposes yielding I and Rh2(OAc)4. X-ray structure data for I are given.  相似文献   

13.
[{Rh(μ‐Cl)(H)2(IPr)}2] (IPr = 1,3‐bis‐(2,6‐diisopropylphenyl)imidazole‐2‐ylidene) was found to be an efficient catalyst for the synthesis of novel propargylamines by a one‐pot three‐component reaction between primary arylamines, aliphatic aldehydes, and triisopropylsilylacetylene. This methodology offers an efficient synthetic pathway for the preparation of secondary propargylamines derived from aliphatic aldehydes. The reactivity of [{Rh(μ‐Cl)(H)2(IPr)}2] with amines and aldehydes was studied, leading to the identification of complexes [RhCl(CO)IPr(MesNH2)] (MesNH2 = 2,4,6‐trimethylaniline) and [RhCl(CO)2IPr]. The latter shows a very low catalytic activity while the former brought about reaction rates similar to those obtained with [{Rh(μ‐Cl)(H)2(IPr)}2]. Besides, complex [RhCl(CO)IPr(MesNH2)] reacts with an excess of amine and aldehyde to give [RhCl(CO)IPr{MesN?CHCH2CH(CH3)2}], which was postulated as the active species. A mechanism that clarifies the scarcely studied catalytic cycle of A3‐coupling reactions is proposed based on reactivity studies and DFT calculations.  相似文献   

14.
The yield of C6-aldehyde in the photocatalytic system Rh2Cl2(CO)4-PMe3 passes through a maximum as the CO pressure and PMe3 concentration increase. The increase in the yield of aldehydes with increasing CO pressure is related to the increase in the carbonylation rate and to the retardation of the photodecomposition of the aldehydes. The rate of the photocatalytic carbonylation of pentane in this system is 20 times higher than in the presence of RhCl(PMe3)2(CO).Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1013–1015, June, 1994.  相似文献   

15.
The heat of reaction for addition of iodine to the planar complexes RhCl(CO)dppe, Rh(dppen)2+, Rh(dppe)2+ and to the dimer Rh2Cl2(CO)2(dppm)2 has been obtained by a calorimetric method. Iodine forms stronger Rh---I bonds with RhCl(CO)dppe than with the bichelate complexes. The presence of metal-metal interaction in the iodine addition compound of Rh2Cl2(CO)2(dppm)2 makes a significant contribution to the enthalpy change for the oxidative addition. The stereochemistry of the complexes are discussed on the basis of IR and 31P NMR spectra.  相似文献   

16.
Twenty-three different Rh complexes of the (NHC)RhCl(cod) and (NHC)RhCl(CO)2 type were synthesized from [RhCl(cod)]2. The electron donating nature of the NHC ligands was changed in a systematic manner. The redox potentials of the various (NHC)RhCl(cod) and the ν(CO) of the various (NHC)RhCl(CO)2 were determined. A correlation of the Rh redox potentials and the Rh ν(CO), respectively, with the related data from analogous (NHC)IrCl(cod) and (NHC)IrCl(CO)2 complexes established two linear relationships. The linear regression (R2 = 0.993) of the Rh and the Ir redox potentials results in an equation for the redox potential transformation: E1/2(Ir) = 1.016 · E1/2(Rh) ? 0.076 V. The linear regression (R2 = 0.97) of the Rh and Ir νav(CO) results in an equation for the νav(CO) transformation: νav(CO)Ir = 0.8695 · νav(CO)Rh + 250.7 cm?1. In this manner the Rh and the Ir-scale for the determination of the electron donating properties of NHC ligands are unified.  相似文献   

17.
Catalysis with water-soluble rhodium complexes, RhCl(CO)(TPPMS)2, [TPPMS = P(C6H5)2(C6H4SO3)] (1), RhCl(CO)(TPPDS)2, [TPPDS = P(C6H5)(C6H4SO3)2] (2) and RhCl(CO)(TPPTS)2, [TPPTS = P(C6H4SO3)3] (3) in hydroformylation of 1-hexene, 2-pentene, 2,3-dimethyl-1-butene, cyclohexene and several mixtures of these olefins have been studied, under moderate reaction conditions (T: 50–150 °C; pCO/pH2 = 1; total p: 14–68 bar; Substrate/Catalyst: 600/1) in biphasic toluene/water media. The catalytic system shows high activity but low selectivity. The linear and branched oxygenated products obtained are equally useful in naphtha upgrading, as observed in the real El Palito naphtha tried. The catalysts can be recycled several times without significant activity loss.  相似文献   

18.
Syntheses of the complexes trans-[PtCl2(PR3)Mo2(CO)45-C5H5)2(tBuCP)], (PR3=PEt3, PPr3, PBu3, PPh2Me, PPhMe2) trans-[PdCl2(PBu3)Mo2(CO)45-C5H5)2(tBuCP)], and trans[RhCl{(PF2NMe)2CO}Mo2(CO)45-C5H5)2(tBuCP)] are described and their 31P NMR spectra presented and discussed.  相似文献   

19.
The complex [TpMe2,ClRh(CO)2] reacts with chloroform to give quantitatively the rhodium(III) complex [TpMe2,ClRhCl(CHCl2)(CO)] resulting from the oxidative addition of a C-Cl bond. Further reaction with diisopropylamine gives the aminocarbene complex [TpMe2,ClRhCl2(CHNiPr2)], whose X-ray crystal structure has been solved. Addition of an excess of diisopropylamine to [TpMe2,ClRh(CO)2] in chloroform provides directly [TpMe2,ClRhCl2(CHNiPr2)].  相似文献   

20.
But-3-enyldiphenylphosphine (mbp) and diphenylpent-4-enylphosphine (mpp) react with Rh2Cl2(C2H4)4 (molar ratio 21 to form the four coordinate dimeric complexes Rh2Cl2(mbp)2 and Rh2Cl2(mpp)2 respectively, while but-3-enyldiphenylphosphine reacts with Rh2Cl2(C2H4)4 (molar ratio 41) to form RhCl(mbp)2, a five coordinate complex in the solid state. The dimers further react with sodium tetraphenylborate to give the π-bonded tetraphenylborate complexes Rh[mbp][C6H5)4B] and Rh[i-mpp][(C6H5)4B] where i-mpp = (C6H5)2P(CH2CH2CHCHCH3). RhCl(CO)(mbp)2 reacts with sodium tetraphenylborate to form the five coordinate cationic complex [Rh(CO)(mbp)2][(C6H5)4B]. Both RhCl(CO)(mbp)2 and RhCl(mbp)2 react with hydrogen in methanol saturating the olefin to form RhCl[CO][(C6H5)2P(C4H9)]2 and Rh2Cl2[(C6H5)2P(C4H9)]2 respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号