首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reaction of poorly soluble manganese(II) bis(1-hydroxyethylidene)diphosphonate tetrahydrate Mn(H3L)2 · 4H2O with 2-aminoethanol H2NCH2CH2OH in an aqueous solution on heating to 70–80°C causes the initial formation of soluble tris(2-hydroxyethanaminium) manganese(II) bis(1-hydroxyethylidene) diphosphonate Mn(H3L)2 · 3H2NCH2CH2OH · 4H2O, which next disproportionates into poorly soluble 2-hydroxyethanaminium manganese(II) (1-hydroxyethylidene)diphosphonate MnH2L · H2NCH2CH2OH and metal-cation-free coordination polymer of (1-hydroxyethylidene)diphosphonic acid with 2-aminoethanol. Poorly soluble MnH2L · H2NCH2CH2OH can be readily converted into the soluble form by treatment with 2-aminoethanol or 2-amino-2-(hydroxymethyl)propane-1,3-diol H2NC(CH2OH)3.  相似文献   

2.
Summary Aquocomplexes of copper(II) and nickel(II) involving (H2NCH2)2, H2NCH2CH2NHCH2CH2NH2 and H2NCH2CH2NHCH2CH2NHCH2CH2NH2 as ligands were prepared and characterised. Using a pH-stat method, the kinetics of the base hydrolysis of amino acid esters such as H2NCH2CO2CH3·HCl (GE), (HO)C6H4CH2-(NH2)CO2CH3·HCl (TE), CH3S(CH2)2CH(NH2)CO2CH3· HCl (ME), HSCH2CH(NH2)CO2C2H5·HCl (CE), (HE) and [—SCH2CH(NH2)CO2CH3]2·2HCl (CysE) was studied. These complexes substantially enhance the rate of hydrolysis, the values of the second-order rate constants being some 10–30 times greater than those obtained in the presence of simple metal ions.  相似文献   

3.
Contributions to the Chemistry of Phosphorus. 237. On the Reaction of Diphosphane(4) with Peroxo Compounds: Formation of Phosphinophosphinic Acid, H2PPH(O)OH, and Bis(phosphino)phosphinic Acid, (H2P)2P(O)OH Diphosphane(4) reacts with peroxo compounds such as hydrogen peroxide, tetraline hydroperoxide, trifluoroperoxyacetic acid, and cumene hydroperoxide (which is particularly suited for preparative work) at ?30°C to furnish phosphino-phosphinic acid, H2PPH(O)OH ( 1 ), as the primary product. Compound 1 disproportionates to a major extent in statu nascendi to give phosphanes (above all PH3) and monophosphorus acids of various oxidation states as well as some bis(phosphino)phosphinic acid, (H2P)2P(O)OH ( 2 ). The acids 1 and 2 can be trapped and stabilized as their triethylammonium salts. The structures of these salts have been determined by spectroscopic investigations.  相似文献   

4.
Summary Aquocomplexes of cobalt(II), cobalt(III), palladium(II) and platinum(II) involving (H2NCH2)2, [H2N(CH2)2]2NH and [H2N(CH2)2NHCH2]2 as ligands were prepared and characterized. The kinetics of base hydrolysis of the amino acid esters H2NCH2CO2Me·HCl, HOC6H4CH2CH (NH2)CO2Me·HCl, MeS(CH2)2CH(NH2)CO2Me·HCl, HSCH2CH(NH2)CO2Et·HCl, C3H3N2CH2CH(NH2)-CO2Me·2HCl and [—SCH2CH(NH2)CO2Me]2·2HCl in the presence of these complexes have been studied. The rate of hydrolysis is influenced substantially by these complexes and the second order rate constants are some 10–90 times greater than those obtained in the presence of simple metal ions.  相似文献   

5.
Reaction of [Mo6I8(CH3COO)6]2– with bis(pentafluorophenyl)phosphinic acid HO(O)P(C6F5)2 yielded a new bright‐red luminescent complex [{Mo6I8}(O2P(C6F5)2)6]2–, isolated as (Bu4N)(H5O2)[{Mo6I8}(O2P(C6F5)2)6] · 3(Et2O) · 1.5(acetone). It was characterized by X‐ray analysis, CV, ESI‐mass spectrometry, and NMR spectroscopy.  相似文献   

6.
New complexes of copper(II) nitrate, chloride, tetrafluoroborate, perchlorate, and perrhenate with bis(4-iodo-3,5-dimethylpyrazol-1-yl)methane (L) were obtained. The molecular and crystal structures of [CuL(H2O)(NO3)2] · (CH3)2CO, [CuL2(H2O)][CuL2Cl][CuCl4], [CuL2](BF4)2 · (CH3)2CO, and [CuL2(H2O)](ClO4)2 · (CH3)2CO were determined by X-ray diffraction analysis. In all the complexes, L was found to serve as a chelating bidentate ligand through the N2 and N2′ atoms of its pyrazole rings to form a six-membered chelate ring.  相似文献   

7.
The reaction of the sterically shielded phosphane derivative, dichlorodiethylaminophosphane, Cl2PNEt2, with an excess of a mixture of 2,6‐bis(trifluoromethyl) and 2,4‐bis(trifluoromethyl)phenyl lithium gives bis[2,4‐bis(trifluoromethyl)phenyl]diethylaminophosphane, [2,4‐(CF3)2C6H3]2PNEt2, in 72 % yield as a colourless solid, while 2,6‐bis(trifluoromethyl)phenyl lithium remains unchanged in solution. The amino derivative crystallizes in the monoclinic space group P21/c (a 869.2(1), b 1857.4(1), c 1357.6(1) pm, β 100.57(4)°, Z = 4). Treatment of [2,4‐(CF3)2C6H3]2PNEt2 in CHCl3 solution with conc. HCl allows the synthesis of [2,4‐(CF3)2C6H3)]2PCl. [2,4‐(CF3)2C6H3]2PCl reacts with H2O in THF solution with quantitative formation of the corresponding secondary phosphane oxide. To obtain bis[2,4‐bis(trifluoromethyl)phenyl]phosphinic acid, [2,4‐(CF3)2C6H3]2P(O)OH, quantitatively, a CHCl3 solution of [2,4‐(CF3)2C6H3]2P(O)H, has to be stirred in an NO2 atmosphere. The phosphinic acid crystallizes is the triclinic space group (a 754.2(1), b 927.6(2), c 1305.5(2) pm, α 85.11(2)°, β 75.45(1)°, γ 79.99(2)°, Z = 2). From the reaction of the phosphinic acid with either elemental sodium or with cyanide salts, the corresponding phosphinate salts are obtained in an almost quantitatively yield.  相似文献   

8.
Crystals of mononuclear tris[bis(2,6‐diisopropylphenyl) phosphato‐κO]pentakis(methanol‐κO)lanthanide methanol monosolvates of lanthanum, [La(C24H34O4P)3(CH3OH)5]·CH3OH, ( 1 ), cerium, [Ce(C24H34O4P)3(CH3OH)5]·CH3OH, ( 2 ), and neodymium, [Nd(C24H34O4P)3(CH3OH)5]·CH3OH, ( 3 ), have been obtained by reactions between LnCl3(H2O)n (n = 6 or 7) and lithium bis(2,6‐diisopropylphenyl) phosphate in a 1:3 molar ratio in methanol media. Compounds ( 1 )–( 3 ) crystallize in the monoclinic P21/c space group and have isomorphous crystal structures. All three bis(2,6‐diisopropylphenyl) phosphate ligands display a κO‐monodentate coordination mode. The coordination number of the metal atom is 8. Each [Ln{O2P(O‐2,6‐iPr2C6H3)2}3(CH3OH)5] molecular unit exhibits four intramolecular O—H…O hydrogen bonds, forming six‐membered rings. The unit forms two intermolecular O—H…O hydrogen bonds with one noncoordinating methanol molecule. All six hydroxy H atoms are involved in hydrogen bonding within the [Ln{O2P(O‐2,6‐iPr2C6H3)2}3(CH3OH)5]·CH3OH unit. This, along with the high steric hindrance induced by the three bulky diaryl phosphate ligands, prevents the formation of a hydrogen‐bond network. Complexes ( 1 )–( 3 ) exhibit disorder of two of the isopropyl groups of the phosphate ligands. The cerium compound ( 2 ) demonstrates an essential catalytic inhibition in the thermal decomposition of polydimethylsiloxane in air at 573 K. Catalytic systems based on the neodymium complex tris[bis(2,6‐diisopropylphenyl) phosphato‐κO]neodymium, ( 3′ ), which was obtained as a dry powder of ( 3 ) upon removal of methanol, display a high catalytic activity in isoprene and butadiene polymerization.  相似文献   

9.
The etherate of (Ph2SiO)8[Al(O)OH]4 can be transformed into the pyrazine adduct (Ph2SiO)8[Al(O)OH]4 · 3N(C2H2)2N ( 1 ), the ethyl acetate adduct (Ph2SiO)8[Al(O)OH]4 · 3H3C-C(O)OC2H5 ( 2 ), the 1,6-hexane diol adduct (Ph2SiO)8[Al(O)OH]4 · 2HO–CH2(CH2)4CH2–OH ( 3 ) and the 1,4-cyclohexane diol adduct (Ph2SiO)8[Al(O)OH]4 · 4HO–CH(CH2CH2)2CH–OH ( 4 ). In all compounds the OH groups of the starting material bind to the bases through O–H ··· N ( 1 ) or O–H ··· O hydrogen bonds ( 2 , 3 , 4 ) as found from single-crystal X-ray diffraction analyses. Whereas in 1 only three of the central OH groups bind to the pyrazines, in 2 two of them bind to the same carbonyl oxygen atom of the ethyl acetate resulting in an unprecedented O–H ··· O ··· H–O double hydrogen bridge. The hexane diol adduct 3 in the crystal forms a one-dimensional coordination polymer with an intramolecularly to two OH groups grafted hexane diol loop, while the second hexane diol is connecting intermolecularly. In the cyclohexane diol adduct 4 all OH groups of the central Al4(OH)4 ring bind to different diols, leaving one alcohol group per diol uncoordinated. These “free” OH groups form an (O-H ··· )4 assembly creating a three-dimensional overall structure. When reacting with (Ph2SiO)8[Al(O)OH]4 lysine loses water, turns into the cyclic 3-amino-2-azepanone, and transforms through chelation of one of the aluminum atoms the starting material into a new polycycle. The isolated compound has the composition (Ph2SiO)12[Al(O)OH]4[Al2O3]2 · 4 C6H12N2O · 6(CH2)4O ( 5 ).  相似文献   

10.
The crystal structures of rare‐earth diaryl‐ or dialkylphosphate derivatives are poorly explored. Crystals of bis[bis(2,6‐diisopropylphenyl)phosphato‐κO ]chloridotetrakis(methanol‐κO )neodymium methanol disolvate, [Nd(C24H34O4P)Cl(CH4O)4]·2CH3OH, (1), and of the lutetium, [Lu(C24H34O4P)Cl(CH4O)4]·2CH3OH, (2), and yttrium, [Y(C24H34O4P)Cl(CH4O)4]·2CH3OH, (3), analogues have been obtained by reactions between lithium bis(2,6‐diisopropylphenyl)phosphate and LnCl3(H2O)6 (in a 2:1 ratio) in methanol. Compounds (1)–(3) crystallize in the C 2/c space group. Their crystal structures are isomorphous. The molecule possesses C 2 symmetry with a twofold crystallographic axis passing through the Ln and Cl atoms. The bis(2,6‐diisopropylphenyl)phosphate ligands all display a κ1O‐monodentate coordination mode. The coordination polyhedron for the metal atom [coordination number (CN) = 7] is a distorted pentagonal bipyramid. Each [Ln{O2P(O‐2,6‐iPr2C6H3)2}2Cl(CH3OH)4] molecular unit exhibits two intramolecular O—H…O hydrogen bonds, forming six‐membered rings, and two intramolecular O—H…Cl interactions, forming four‐membered rings. Intermolecular O—H…O hydrogen bonds connect each unit via four noncoordinating methanol molecules with four other units, forming a two‐dimensional hydrogen‐bond network. Crystals of bis[bis(2,6‐diisopropylphenyl)phosphato‐κO ]tetrakis(methanol‐κO )(nitrato‐κ2O ,O ′)neodymium methanol disolvate, [Nd(C24H34O4P)(NO3)(CH4O)4]·2CH3OH, (4), have been obtained in an analogous manner from NdCl3(H2O)6. Compound (4) also crystalizes in the C 2/c space group. Its crystal structure is similar to those of (1)–(3). The κ2O ,O ′‐bidentate nitrate anion is disordered over a twofold axis, being located nearly on it. Half of the molecule is crystallographically unique (CNNd = 8). Unlike (1)–(3), complex (4) exhibits disorder of all three methanol molecules, one isopropyl group of the phosphate ligand and the NO3 ligand. The structure of (4) displays intra‐ and intermolecular O—H…O hydrogen bonds similar to those in (1)–(3). Compounds (1)–(4) represent the first reported mononuclear bis[bis(diaryl/dialkyl)phosphate] rare‐earth complexes.  相似文献   

11.
Crystal forms of cobalt(III) tris(2-aminoethanolate) hydrates, i.e., red cubic crystals of the composition fac-[Co(NH2CH2CH2O)3] · 5.44H2O (fac-I · 5.44H2O) and blue prismatic crystals of the composition mer-[Co(NH2CH2CH2O)3] · 3H2O (mer-I · 3H2O) were studied by the 59Co, 13C NMR and X-ray diffraction methods. It was found that mer-[Co(NH2CH2CH2O)3] · 3H2O (mer-I · 3H2O) is a new pseudopolymorphic modification of fac-[Co(NH2CH2CH2O)3] · 3H2O (fac-I · 3H2O), while fac-I · 3H2O represents a new polymorphic modification of the complex mer-[Co(NH2CH2CH2O)3] · 3H2O (mer-I · 3H2O) described previously. The comparative analysis of the spectra revealed dynamic equilibrium between these geometric isomers; the fac-isomer is stable in aqueous solutions.  相似文献   

12.
Alkyl(aryl)diaminofluorophosphonium Salts . Alkyl(aryl)diaminodifluoro phosphoranes react with BF3 · O(C2H5)2 or [(C2H5)3O]BF4 to yield alkyl(aryl)diaminofluorophosphonium tetrafluoroborates. t-Butyl-bis(methylamino)-difluorophosphorane forms with C6H5PCl2 or PCl3 [t-C4H9PF(NHCH3)2]Cl, phenylbis(diethylamino)-difluorophosphorane with SbF5 {C6H5PF[N(C2H5)2]2}SbF6. {CH3PF[N(CH3)2]2}Cl is the product of the reaction between methylene bis(dimethylamino)fluorophosphorane and trimethylchlorosilane. The new compounds are characterized by their NMR and vibration spectra.  相似文献   

13.
Nonasodium Bis(hexahydroxoaluminate) Trihydroxide Hexahydrate (Na9[Al(OH)6]2(OH)3 · 6H2O) – Crystal Structure, NMR Spectroscopy and Thermal Behaviour The crystal structure of the nonasodium bis(hexahydroxoaluminate) trihydroxide hexahydrate Na9[Al(OH)6]2(OH)3 · 6H2O (4.5 Na2O Al2O3 · 13.5 H2O) (up to now described as 3 Na2O · Al2O3 · 6H2O, 4Na2O · Al2O3 · 13 H2O and [3 Na2O · Al2O3 · 6H2O] [xNaOH · yH2O], respectively) was solved. The X-ray single crystal diffraction analysis (triclinic, space group P1 , a = 8.694(1) Å, b = 11.344(2) Å, c = 11.636(3) Å, α = 74.29(2)°, β = 87.43(2)°, γ = 70.66(2)°, Z = 2) results in a structure, consisting of monomeric [Al(OH)6]3? aluminate anions, which are connected by NaO6 octahedra groups. Furthermore the structure contains both, two hydroxide anions only surrounded by water of crystallization and OH groups of [Al(OH)6]3? aluminate anions and a hydroxide anion involved in three NaO6 coordination octahedra directly and moreover connected with a water molecule by hydrogen bonding. The results of 27Al and 23Na-MAS-NMR investigations, the thermal behaviour of the compound and possible relations between the crystal structure and the conditions of coordination in the corresponding sodium aluminate solution are discussed as well.  相似文献   

14.
The crystal network of [Cp′2Ti(N?CH3? Gly)2]2+[Cl?]2 (Cp′ = (CH3)C5H4) complex, which crystallizes as a solvate with CH3OH, is built up with discrete cationic units connected through intermolecular H· · ·Cl bonds. The α‐amino acid ligands are attached through an intramolecular H· · ·O bond within one cationic unit. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
Cleavage of the Se–Se bond in [2-(Et2NCH2)C6H4]2Se2 (1) with SO2Cl2 (1:1 molar ratio) yielded the organoselenium(II) chloride [2-(Et2NCH2)C6H4]SeCl (2). Treatment of 2 with excess of KX yielded the organoselenium(II) halides [2-(Et2NCH2)C6H4]SeX [X = Br (3), I (4)]. The new compounds 24 were characterized by solution NMR spectroscopy (1H, 13C, 77Se, 2D experiments). The solid-state molecular structures of 2, 2·HCl and 3 were established by single crystal X-ray diffraction. Distorted T-shaped coordination geometries of type (C,N)SeX (X = Cl, Br) and CSeCl2 were found for the neutral halides 2 and 3, and the zwitterionic species [2-{Et2N+(H)CH2}C6H4]SeCl2 ̄ (2·HCl), respectively. DFT calculations were performed on 24 and the related tellurium compounds [2-(Et2NCH2)C6H4]TeX [X = Cl (5), Br (6) and I (7)] in order to elucidate the bond nature and FT-Raman features of this class of organochalcogen(II) derivatives.  相似文献   

16.
Six new Ln(III) complexes viz., [Gd(tptz)(SCN)3(CH3OH)2OH2]·CH3OH (1), [Eu(tptz)(SCN)3(CH3OH)2OH2]·CH3OH (2), [Tb(tptz)(SCN)3(OH2)3]4 (3), [Gd(tptz)(OBz)2(μ-OBz)OH2]2·2H2O (4), [OH2(OBz)2(tptz)Eu1(μ-OBz)2Eu2(tptz)(OBz)2OH2]·CH3OH·7H2O (5), and {[Tb1(tptz)(OBz)2(μ-OBz)]2·[Tb2(tptz)(OBz)3CH3OH]2}·2CH3OH·4H2O (6) (Ln = Gd, Eu, Tb; tptz = 2,4,6-tris(2-pyridyl)-1,3,5-triazine; BzONa = sodium benzoate), have been synthesized and characterized by physicochemical methods including single-crystal X-ray crystallography. The X-ray studies demonstrate that 1–3 are mononuclear, whereas 4–6 are binuclear. The photophysical properties of 1–6 have been studied with ultraviolet absorption and emission spectral studies. Their thermal properties have been studied by thermogravimetric (TG) and derivative thermogravimetric analysis (DTG), demonstrating that the final product after decomposition was Ln2O3 for all these complexes.  相似文献   

17.
Self-assemblies of the 2,4,6-tris(2-pyridyl)-1,3,5-triazine (tptz) and Cu(OH)2 in the presence of dicarboxylate ligands yielded four new complexes, [Cu4(bpca)4(L1)2(H2O)2]·5H2O (1), [Cu2(bpca)2(L2)(H2O)2]·2H2O (2), [Cu2(bpca)2(L3)(H2O)2]·H2O (3), and [Cu2(bpca)2(L4)(H2O)2]·3H2O (4) (bpca = bis(2-pyridylcarbonyl)amide anion, H2L1 = phthalic acid, H2L2 = succinic acid, H2L3 = maleic acid, H2L4 = acetylenedicarboxylic acid). Their structures were determined by single-crystal X-ray diffraction analyzes and further characterized by IR spectra and thermogravimetric analyzes. The five-coordinate Cu ions in 1 are bridged by phthalate to form 1-D chains, which are assembled into 3-D frameworks by extensive hydrogen bonds. Compounds 2–4 possess similar structures, built up of [Cu2(bpca)2(L)(H2O)2] (L = L2 for 2, L3 for 3, L4 for 4) and lattice molecules. The 3-D frameworks of 2–4 are completed by hydrogen bond interactions.  相似文献   

18.
The reaction of the aryl‐oxide ligand H2L [H2L = N,N‐bis(3, 5‐dimethyl‐2‐hydroxybenzyl)‐N‐(2‐pyridylmethyl)amine] with CuSO4 · 5H2O, CuCl2 · 2H2O, CuBr2, CdCl2 · 2.5H2O, and Cd(OAc)2 · 2H2O, respectively, under hydrothermal conditions gave the complexes [Cu(H2L1)2] · SO4 · 3CH3OH ( 1 ), [Cu2(H2L2)2Cl4] ( 2 ), [Cu2(H2L2)2Br4] ( 3 ), [Cd2(HL)2Cl2] ( 4 ), and [Cd2(L)2(CH3COOH)2] · H2L ( 5 ), where H2L1 [H2L1 = 2, 4‐dimethyl‐6‐((pyridin‐2‐ylmethylamino)methyl)phenol] and H2L2 [H2L2 = 2‐(2, 4‐dimethyl‐6‐((pyridin‐2‐ylmethylamino)methyl)phenoxy)‐4, 6‐dimethylphenol] were derived from the solvothermal in situ metal/ligand reactions. These complexes were characterized by IR spectroscopy, elementary analysis, and X‐ray diffraction. A low‐temperature magnetic susceptibility measurement for the solid sample of 2 revealed antiferromagnetic interactions between two central copper(II) atoms. The emission property studies for complexes 4 and 5 indicated strong luminescence emission.  相似文献   

19.
Two picolinate-containing nickel(II) complexes [Ni(bbma)(pic)(H2O)]ClO4 · CH3OH (1) and [Ni(ntb)(pic)]Cl · CH3OH · 3H2O (2) were synthesized and characterized by infrared, elemental analysis, UV-Vis, and X-ray diffraction analyses, where bbma is bis(benzimidazol-2-yl-methyl)amine, ntb is tris(2-benzimidazolylmethyl)amine, pic is the anion of picolinic acid. X-ray analysis shows that both complexes are mononuclear with picolinate coordinated to Ni(II) in a μ2-N,O chelating mode. Both complexes adopt distorted octahedral geometry. Intermolecular N–H ··· O and O–H ··· O hydrogen bonds and π–π interactions in 1 and 2 are important in stabilization of the crystal structures.  相似文献   

20.
Bis(triphenylphosphine)iminium Bis(methoxo)phthalocyaninato(2–)ferrate(III) – Synthesis and Crystal Structure Chlorophthalocyaninato(2–)ferrate(III) reacts with bis(triphenylphosphine)iminium hydroxide in methanol/acetone solution to yield blue crystals of bis(triphenylphosphine)iminium bis(methoxo)phthalocyaninato(2–)ferrate(III). The complex salt crystallizes as an acetone/methanol solvate (bPNP)[Fe(OCH3)2pc2–] · (CH3)2CO · 1.5 CH3OH in the triclinic space group P 1 (no. 2) with the cell parameters a = 13.160(5) Å, b = 15.480(5) Å, c = 17.140(5) Å, α = 97.54(5)°, β = 91.79(5)°, γ = 95.44(5)°. The Fe atom is located in the centre of the pc2– ligand coordinating four isoindole N atoms (Niso) of the pc2– ligand and two O atoms of the methoxo ligands in a mutual trans arrangement. The average Fe–O and Fe–Niso distances are 1.887 and 1.943 Å, respectively. The cation adopts the bent conformation (< P–N–P = 140.4(2)°) with P–N distances of 1.579(3) and 1.575(3) Å.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号