首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Reaction of C(NMe2)4 with Ni(CO)4 – Syntheses and Structures of [C(NMe2)3][(CO)3NiC(O)NMe2], [C(NMe2)3]2[Ni5(CO)12], and [C(NMe2)3]3[Ni6(CO)12][O2CNMe2] The reaction of C(NMe2)4 with Ni(CO)4 in THF produces the carbamoyl complex [C(NMe2)3][(CO)3NiC(O)NMe2] ( 1 ); side products are the purple cluster compound [C(NMe2)3]2[Ni5(CO)12] · THF ( 2 · THF) and the red cocristallization product [C(NMe2)3]3[Ni6(CO)12][O2CNMe2] ( 3 ). All compounds were studied by X‐ray diffraction analyses. The cations of 3 are all disordered but not those of 1 and 2 . The unit cell of 1 contains two crystallographically independent anions (I and II) which differ in the dihedral angle between the plane of the carbamoyl ligand and the plane defined by the atoms CCarbamoyl–Ni–CO amounting 0° in the anion I and 18° in the anion II.  相似文献   

2.
The [Ni36Pt4(CO)45]6- and [Ni37Pt4(CO)46]6- clusters have been obtained in mixture upon reaction in acetonitrile of [Ni6(CO)12]2- salts with K2PtCl4 in a 2.5:1 molar ratio. The two hexaanions were indistinguishable by spectroscopic techniques. Crystallization of their trimethylbenzylammonium salts led to crystals of composition 0.5[NMe3CH2Ph]6[Ni36Pt4(CO)45]-0.5[NMe3CH2Ph]6[Ni37Pt4(CO)46]·C3H8O, hexagonal,space group P63 (No. 173), a=17.853(9), c=27.127(13) Å, Z=2; final R=0.057. The metal core of the [Ni36Pt4(CO)45]6- anion consists of a Pt4 tetrahedron fully encapsulated in a shell of 36 Ni atoms belonging to a very distorted and incomplete 5 tetrahedron. The [Ni37Pt4(CO)46]6- hexaanion derives from the former by capping the unique triangular face of the metal polyhedron with an additional Ni(CO) fragment. The [Ni36Pt4(CO)45]6--[Ni37Pt4(CO)46]6- mixture is rapidly degraded to the known [Ni9Pt3(CO)21]4- cluster by exposure to carbon monoxide. Its reaction with protic acids initially affords the corresponding [H6-nNi36Pt4(CO)45]n--[H6-nNi37Pt4(CO)46]n- (n=5, 4) derivatives, and eventually leads to rearrangement to the known [H6-n Ni38Pt6(CO)48]n- species. Both [Ni36Pt4(CO)45]6--[Ni37Pt4(CO)46]6- and [HNi36Pt4(CO)45]5--[HNi37Pt4(CO)46]5- mixtures have been chemically and electrochemically reduced to their corresponding [Ni36Pt4(CO)45]n--[Ni37Pt4(CO)46]n- (n=7–9) and [HNi36Pt4(CO)45]n--[HNi37Pt4(CO)46]n- (n=6–8) mixtures.  相似文献   

3.
The reactions of [Ni16(C2)2(CO)23]4? and [Ni38C6(CO)42]6? with CuCl afforded mixtures of the previously reported [HNi42C8(CO)44(CuCl)]7? bimetallic octa-carbide cluster and the new [HNi43C8(CO)45]7? and [HNi44C8(CO)46]7? homo-metallic octa-carbides. The three species have very similar properties resulting always in co-crystals such as [NMe4]7[HNi42+2xC8(CO)44+2x(CuCl)1?x]·6.5MeCN (x = 0.14) (86% [HNi42C8(CO)44(CuCl)]7?, 14%[HNi43C8(CO)45]7?/[HNi44C8(CO)46]7?) and [NMe4]7[HNi42+2xC8(CO)44+2x(CuCl)1?x]·5.5MeCN (x = 0.30) (70% [HNi42C8(CO)44(CuCl)]7?, 30% [HNi43C8(CO)45]7?/[HNi44C8(CO)46]7?). The new homo-metallic octa-carbides can be obtained free from the Ni–Cu octa-carbido cluster by reacting [Ni10(C2)(CO)16]2? in thf with a stoichiometric amount of CuCl, and crystals of [NMe4]6[H2Ni43+xC8(CO)45+x]·6MeCN (x = 0.72), which contain [H2Ni44C8(CO)46]6? (72%) and [H2Ni43C8(CO)45]6? (28%), have been obtained. Despite the different charges and compositions, these anions display almost identical structures, which are also closely related to those previously reported for the bimetallic Ni–Cd octa-carbido clusters [Ni42+xC8(CO)44+x(CdCl)]7? and [HNi42+xC8(CO)44+x(CdBr)]6?. Indeed, all these clusters are based on the same Ni42C8 cage decorated by miscellaneous [CdX]+ (X = Cl, Br), [CuCl] and [Ni(CO)] fragments.  相似文献   

4.
The carbamoyl complex [C(NMe2)3][(CO)4Fe{C(O)NMe2}] ( 1 ) reacts with InMe3 under loss of the methyl groups to produce a variety of compounds from which only the anionic cluster complexes [C(NMe2)3]3[Fe2(CO)6(μ‐CO){μ‐InFe(CO)4(μ‐O2CNMe2)InFe(CO)4}] ([C N 3]3[ 2 ]) and [C(NMe2)3]2[{(CO)4Fe}2In(O2CNMe2)]·THF ([C N 3]2[ 3 ]·THF) could be crystallized and characterized by X‐ray analyses. The anion [ 2 ]3? has a Fe2(CO)9‐like structure and both anions contain the carbaminato ligand either in a bridging or in a chelating function.  相似文献   

5.
[Al(NMe2)3]2 combines with Fe(CO)5 and Mn2(CO)10 forming bimetallic compounds Fe2(CO)8[C(NMe2)OAl(NMe2)2]2 and Mn2(CO)9[C(NMe2)OAl2-(NMe2)5]. X-ray diffraction analyses reveal the formation of aluminometallocarbene compounds with central connectivities, MC[NMe2)][OAl(NMe2)(μ-NMe2)2].  相似文献   

6.
New Phosphorus-bridged Transition Metal Carbonyl Complexes. The Crystal Structures of [Re2(CO)7(PtBu)3], [Co4(CO)10(PtBu)2], [Ir4(CO)6(PtBu)6], and [Ni4(CO)10(PiPr)6], (PtBu)3 reacts with [Mn2(CO)10], [Re2(CO)10], [Co2(CO)8] and [Ir4(CO)12] to form the multinuclear complexes [M2(CO)7(PtBu)3] (M = Re ( 1 ), Mn ( 5 )), [Co4(CO)10(PtBu)2] ( 2 ) and [Ir4(CO)6(PtBu)6] ( 3 ). The reaction of (PiPr)3 with [Ni(CO)4] leads to the tetranuclear cluster [Ni4(CO)10(PiPr)6] ( 4 ). The complex structures were obtained by X-ray single crystal structure analysis: ( 1 : space group P1 (Nr. 2), Z = 2, a = 917.8(3) pm, b = 926.4(3) pm, c = 1 705.6(7) pm, α = 79.75(3)°, β = 85.21(3)°, γ = 66.33(2)°; 2 : space group C2/c (Nr. 15), Z = 4, a = 1 347.7(6) pm, b = 1 032.0(3) pm, c = 1 935.6(8) pm, β = 105.67(2)°; 3 : space group P1 (Nr. 2), Z = 4, a = 1 096.7(4)pm, b = 1 889.8(10)pm, c = 2 485.1(12) pm, α = 75.79(3)°, β = 84.29(3)°, γ = 74.96(3)°; 4 : space group P21/c (Nr. 14), Z = 4, a = 2 002.8(5) pm, b = 1 137.2(8) pm, c = 1 872.5(5) pm, β = 95.52(2)°).  相似文献   

7.
A fully encapsulated Pt 4 tetrahedron in an incomplete tetrahedron of 36 nickel atoms is present in [Ni36Pt4(CO)45]6− ( 1 ; see picture for the metal framework), which is obtained as an inseparable mixture with [Ni37Pt4(CO)46]6− ( 2 ) by reaction of [Ni6(CO)12]2− with K2[PtCl4]. The trimethylbenzylammonium salts of 1 and 2 cocrystallize in a 1:1 ratio. The additional Ni atom of 2 caps the truncated vertex of 1 .  相似文献   

8.
The controlled reductive carbonylation under 1 atm. of CO of [Ir(cyclooctene)2(μ-Cl)]2, supported on a silica surface added with an alkali carbonate such as Na2CO3 or K2CO3, can be directed toward the formation of [Ir4(CO)12], K2[Ir6(CO)15] or K2[Ir8(CO)22] by controlling (i) the nature and amount of alkali carbonate, (ii) the amount of surface water, and (iii) the temperature. [Ir4(CO)12] can also be prepared by direct controlled reductive carbonylation of IrCl3 supported on silica in the presence of well controlled amounts of Na2CO3. These efficient silica-mediated syntheses are comparable to conventional synthetic methods carried out in solution or on the MgO surface. Like in strongly basic solution or on the MgO surface, the initially formed [Ir4(CO)12], the first step of nucleation which does not require a strong basicity of the silica surface, gives in a second time sequentially [Ir8(CO)22]2? and [Ir6(CO)15]2? according to reaction conditions and basicity of the silica surface.  相似文献   

9.
The reaction between BiI3 and two equivalents of dmpu (dmpu = N,N′-dimethylpropylene urea) in thf (tetrahydrofuran) or toluene affords dark red crystals of the complex [Bi(dmpu)6][Bi3I12] which was characterised by X-ray crystallography and consists of octahedral [Bi(dmpu)6]3+ cations and [Bi3I12]3? anions both with 3 symmetry. An analogous reaction between SbI3 and dmpu afforded orange crystals of what is probably a hydrolysis product, [C5NH6]2[H(dmpu)2][Sb2I9], which was also characterised by X-ray crystallography and contains a face-shared bioctahedral [Sb2I9]3? anion with two pyridinium cations and a hydrogen bonded [H(dmpu)2]+ cation. [CH2?C(C6H4-4-NO2)CH2NMe3]I and one equivalent of SbI3 afforded the orange crystalline complex [CH2?C(C6H4-4-NO2)CH2NMe3]3[Sb2I9] an X-ray crystallographic study of which revealed a face-shared bioctahedral [Sb2I9]3? anion similar to that present in [C5NH6]2[H(dmpu)2][Sb2I9]. Four equivalents of BiI3 and [CH2?C(C6H4-4-NO2)CH2NMe3]I afforded the complex [CH2?C(C6H4-4-NO2)CH2NMe3]3[Bi3I12], the [Bi3I12]3? anion being essentially identical to that encountered in [Bi(dmpu)6][Bi3I12]. [CH3(CH2)2COS(CH2)2NMe3]I and four equivalents of SbI3 yielded orange crystals of the complex [CH3(CH2)2COS(CH2)2NMe3]4[Sb8I28] which was also characterised by X-ray crystallography and shown to contain a new structural type of [E8X28]4? anion (E = As, Sb, Bi; X = halide).  相似文献   

10.
The reaction of the [Ni6(CO)12]2− dianion with [Rh(COD)Cl]2 (COD = cyclooctadiene) in acetone affords a mixture of bimetallic Ni–Rh clusters, mainly consisting of the new [Ni7Rh3(CO)18]3− and [Ni8Rh(CO)18]3− trianions. A study of the reactivity of [Ni7Rh3(CO)18]3− led to isolation of the new [Ni3Rh3(CO)13]3− and [NiRh8(CO)19]2− anions. All these new bimetallic Ni–Rh carbonyl clusters have been isolated in the solid state as tetrasubstituted ammonium salts and have been characterised by elemental analysis, X-ray diffraction studies, ESI-MS and electrochemistry. The unit cell of the [NEt4]3[Ni7Rh3(CO)18] salt contains two orientationally-disordered ν2-tetrahedral [Ni7Rh3(CO)18]3− trianions with occupancy factors of 0.75 and 0.25. Besides, their inner Ni3Rh3 octahedral moieties show two cis sites purely occupied by Rh atoms, two trans sites purely occupied by Ni atoms and the remaining two cis sites are disordered Ni and Rh sites with respective occupancy fraction of 0.5. At difference from the parent [Ni7Rh3(CO)18]3−, the octahedral [Ni3Rh3(CO)13]3− displays an ordered distribution of Ni and Rh atoms in two staggered triangles. The [NiRh8(CO)19]2− dianion adopts an isomeric metal frame with respect to that of the [PtRh8(CO)19]2− congener. As a fallout of this work, new high-yield synthesis of the known [Ni6Rh3(CO)17]3− and [Ni6Rh5(CO)21]3−, as well as other currently-investigated bimetallic Ni–Rh clusters have been obtained.  相似文献   

11.
Synthesis and Structure of the Phosphorus-bridged Transition Metal Complexes [Fe2(CO)6(PR)6] (R = tBu, iPr), [Fe2(CO)4(PiPr)6], [Fe2(CO)3Cl2(PtBu)5], [Co4(CO)10(PiPr)3], [Ni5(CO)10(PiPr)6], and [Ir4(C8H12)4Cl2(PPh)4] (PtBu)3 and (PiPr)3 react with [Fe2(CO)9] to form the dinuclear complexes [Fe2(CO)6(PR)6] (R = tBu: 1 ; iPr: 2 ). 2 is also formed besides [Fe2(CO)4(PiPr)6] ( 3 ) in the reaction of [Fe(CO)5] with (PiPr)3. When PiPr(PtBu)2 and PiPrCl2 are allowed to react with [Fe2(CO)9] it is possible to isolate [Fe2(CO)3Cl2(PtBu)5] ( 4 ). The reactions of (PiPr)3 with [Co2(CO)8] and [Ni(CO)4] lead to the tetra- and pentanuclear clusters [Co4(CO)10(PiPr)3] ( 5 ), [Ni4(CO)10(PiPr)6] [2] and [Ni5(CO)10(PiPr)6] ( 6 ). Finally the reaction of [Ir(C8H12)Cl]2 with K2(PPh)4 leads to the complex [Ir4(C8H12)4Cl2(PPh)4] ( 7 ). The structures of 1–7 were obtained by X-ray single crystal structure analysis (1: space group P21/c (Nr. 14), Z = 8, a = 1 758.8(16) pm, b = 3 625.6(18) pm, c = 1 202.7(7) pm, β = 90.07(3)°; 2 : space group P1 (Nr. 2), Z = 1, a = 880.0(2) pm, b = 932.3(3) pm, c = 1 073.7(2) pm, α = 79.07(2)°, β = 86.93(2)°, γ = 72.23(2)°; 3 : space group Pbca (Nr. 61), Z = 8, a = 952.6(8) pm, b = 1 787.6(12) pm, c = 3 697.2(30) pm; 4 : space group P21/n (Nr. 14), Z = 4, a = 968.0(4) pm, b = 3 362.5(15) pm, c = 1 051.6(3) pm, β = 109.71(2)°; 5 : space group P21/n (Nr. 14), Z = 4, a = 1 040.7(5) pm, b = 1 686.0(5) pm, c = 1 567.7(9) pm, β = 93.88(4)°; 6 : space group Pbca (Nr. 61), Z = 8, a = 1 904.1(8) pm, b = 1 959.9(8) pm, c = 2 309.7(9) pm. 7 : space group P1 (Nr. 2), Z = 2, a = 1 374.4(7) pm, b = 1 476.0(8) pm, c = 1 653.2(9) pm, α = 83.87(4)°, β = 88.76(4)°, γ = 88.28(4)°).  相似文献   

12.
Abstract. By direct reactions of selenium with halogen and trimethylphenylammonium halogenide and tetraphenylphosphonium, ethyltriphenylphosphonium, and methyltriphenylphosphonium bromides, the tetrahalogenidoselenates(II) – bis(trimethylphenylammonium)tetrabromidoselenate(II) bromide, [NPhMe3]2[SeBr4] · [NPhMe3]Br, a mixed bis(trimethylphenylammonium) tetra(bromido/chlorido)selenate(II), [NPhMe3]2[SeBr4–xClx] · [NPhMe3]2SeBr1–yCly], [NPhMe3]2[SeBr4–xClx],the haxahalogenidodiselenates(II) – bis(trimethylphenylammonium) hexabromidodiselenate(II), [NPhMe3]2[Se2Br6], bis(trimethylphenylammonium) hexachloridodiselenate(II), [NPhMe3]2[Se2Cl6], a mixed bis(trimethylphenylammonium) bromido/chlorido‐diselenate(II), [NPhMe3]2[Se2Br5Cl], bis(tetraphenylphosphonium) hexabromidodiselenate(II), [PPh4]2[Se2Br6], bis(ethyltriphenylphosphonium) hexabromidodiselenate(II), [PEtPh3]2[Se2Br6], and bis(methyltriphenylphosphonium) hexabromidodiselenate(II), [PMePh3]2[Se2Br6], were prepared. By the reaction of selenium with bromine in acetonitrile in the presence of trimethylphenylammonium, benzyltrimethylammonium, and tetramethylammonium bromides, the salts of the unique bromidoselenate(I) anions – bis(trimethylphenylammonium) hexabromidotetraselenate(I), [NPhMe3]2[Se4Br6], bis(benzyltrimethylammonium) hexabromidotetraselenate(I), [NBzMe3]2[Se4Br6], and bis(tetramethylammonium) octadecabromidohexadecaselenate(I), [NMe4]2[Se16Br18], were isolated. First mixed‐valence bromidoselenates(II/I) – bis(tetraethylammonium) octabromidotriselenate(II){dibromidodiselenate(I)}, [NEt4]2[Se3Br8(Se2Br2)], bis(tetraphenylphosphonium) hexabromidodiselenate(II)‐bis{dibromidodiselenate(I)}, [PPh4]2[Se2Br6(Se2Br2)2], and tetrakis(tetramethylammonium) bis{decabromidotetraselenate(II)}‐bis{dibromidodiselenate(I)}, [(CH3)4N]4[(Se4Br10)2(Se2Br2)2] – were synthesized. Mixed bis(trimethylphenylammonium) hexabromidoselenate/tellurate(IV), [NPhMe3]2[Se0.75Te0.25Br6], catena‐poly[(di‐μ‐bromidobis‐{tetrabromidoselenate/tellurate(IV)})‐ μ‐bromine], [NPhMe3]2n[Se1.5Te0.5Br10 · Br2]n were isolated. First mixed‐valence bromidoselenate(IV/I)‐bis(trimethylphenylammonium) hexabromidoselenate(IV)‐bis{dibromidodiselenate(I)}, [NPhMe3]2[SeBr6(Se2Br2)2], a number of mixed bromidochalcogenates(IV/I) – bis(trimethylphenylammonium), bis(tetraethylphosphonium), bis(ethyltriphenylphosphonium) hexabromidotellurates(IV)‐bis{dibromidodiselenates(I)}, [NPhMe3]2[TeBr6(Se2Br2)2], [PEt4]2[TeBr6(Se2Br2)2], [PEtPh3]2[TeBr6(Se2Br2)2], bis(triethylmethylammonium) hexabromidotellurate(IV)‐tris{dibromidodiselenate(I)}, [NMeEt3]2n[TeBr6(Se2Br2)3]n, were synthesized. Mixed‐valence bromidoselenate(IV/II) – bis(methyltriphenylphosphonium) hexabromidoselenate(IV)‐bis{dibromidoselenate(II)},[PMePh3]2[SeBr6(SeBr2)2], received by direct synthesis and two mixed‐valence bromidochalcogenates(IV/II) – bis(methyltriphenylphosphonium) and bis(tetrapropylammonium) hexabromidotellurates(IV)‐selenates(II), [PMePh3]2[TeBr6(SeBr2)2] and [NnPr4]2[TeBr6(SeBr2)2], were synthesized from elemental selenium, tellurium dioxide, and corresponding onium bromide. The structures of all compounds were determined by X‐ray diffraction.  相似文献   

13.
The reaction of p‐(N,N‐dimethylaminophenyl)diphenylphosphine [PPh2(p‐C6H4NMe2)] with [Fe3(CO)12], [Rh(CO)2Cl]2 and PdCl2 resulted in three new mononuclear complexes, {Fe(CO)41‐(P)‐PPh2(p‐C6H4NMe2)]} ( 1a ), trans‐{Rh(CO)Cl[η1‐(P)‐PPh2(p‐C6H4NMe2)]2} ( 2 ) and trans‐{PdCl21‐(P)‐PPh2(p‐C6H4NMe2)]2} ( 3 ), respectively. A small amount of dinuclear nonmetal‐metal bonded complex, {Fe2(CO)8[µ‐(P,N)‐PPh2(p‐C6H4NMe2)]} ( 1b ), was also isolated as a side product in the reaction of [Fe3(CO)12]. The complexes were characterized by elemental analyses, mass, IR, UV–vis, 1H, 13C (except 1b) and 31P{1H} NMR spectroscopy. The Pd complex 3 effectively catalyzes the Suzuki–Miyaura cross‐coupling reactions of aryl halides with arylboronic acids in water–isopropanol (1:1) at room temperature. Excellent yields (up to 99% isolated yield) were achieved. The effects of different solvents, bases, catalyst quantities were also evaluated. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
The Reactions of CH2=P(NMe2)3 with Fe(CO)5, Cr(CO)6, and CS2; Molecular Structures of [MeP(NMe2)3][(CO)5CrC(O)CH=P(NMe2)3], and (CO)4Fe=C(OMe)CH=P(NMe2)3 The ylide CH2=P(NMe2)3 ( 1 ) reacts with several binary transition metal carbonyls M(CO)x to produce the corresponding salt like compounds [MeP(NMe2)3][(CO)x–1MC(O)CH=P(NMe2)3] (M = Fe ( 3 ), Cr ( 4 )). The related reaction with CS2 leads to the salt [MeP(NMe2)3][SC(S)CH=P(NMe2)3] ( 2 ). While 4 is thermally stable, 3 rapidly decomposes at room temperature with formation of [MeP(NMe2)3]2[Fe2(CO)8] ( 8 ). Alkylation of 3 (at –50 °C) and 4 with MeSO3CF3 produces the related carbene complexes (CO)x–1M=C(OMe)CH=P(NMe2)3 ( 5 ) and ( 6 ); the reaction of 3 with Me3SiCl results in the formation of the carbene complex (CO)4Fe=C(OSiMe3)CH=P(NMe2)3 ( 7 ). 4 crystallizes in the space group P212121 (No. 19) with a = 1111.1(2), b = 1476.1(3), c = 1823.1(4) pm and Z = 4. 5 crystallizes in the space group P21/n (No. 14) with a = 1303.6(3), b = 910.5(4), c = 1627.0(4) pm, β = 96.06(2)° and Z = 4. The compounds have been characterized by elemental analyses, NMR (1H, 13C, 31P) and IR spectroscopy.  相似文献   

15.
The pyrolyses of [NEt4][H2Re(CO)4] in boiling n-heptane, n-octane and n-nonane are described. Mixtures of polynuclear carbonyl- and hydridocarbonylrhenium species are obtained, the principal products being [Re4(CO)16]2?, [H2Re3(CO)12], [H3Re3(CO)10]2?, [H3Re3O(CO)9]2? and [H6Re4(CO)12]2?. A red-orange crystalline species was isolated from the reaction in n-heptane and shown by X-ray diffraction to be [Net4]2[HRe3(CO)12]. It gives orthorhombic crystals, space group Pbca, with cell constants a 16.07(1), b 23.39(2), c 19.49(1) Å. The structure was solved by Patterson and Fourier methods and refined by least-squares up to a final R value of 0.061, for 1303 independent counter data. The anion [HRe3(CO)12]2? contains an isosceles metal atom triangle, with two short edges of 3.014(3) and 3.018(3) Å and a long hydrogen-bridged edge of 3.125(3) Å.  相似文献   

16.
Bis- and, in particular, tetra-substituted ditertiary phosphine and diphosphazane derivatives of [Fe2(CO)9] and [Ru2(CO)9], readily synthesised by reaction of the appropriate bidentate ligand with [Fe2(CO)9] and [Ru3(CO)12], respectively, are very susceptible to electrophilic attack by reagents such as halogens and protons; the solid state structure of one of the products [Fe2(μ-Br)(CO)4 {μ-(PhO)2PN(Et)P(OPh)2}2]PF6 has been determined by X-ray crystallography.  相似文献   

17.
Electrical conductivities of dilute aqueous solutions for unsymmetrical electrolytes of the type 3:1, 1:3, 3:2, 4:1, 1:4, 4:2, 2:4, 1:5 1:6 and 6:1 are reexamined in the framework of the Quint-Viallard conductivity equations, in order to obtain a uniform representation of their conductivities. The molar and equivalent limiting conductances were evaluated with ion association constants, which were treated as adjustable parameters. The derived values were compared with corresponding results from the literature. The following electrolytes are considered: rare earth (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er) halides, perchlorides, nitrates and sulfates; hexamminecobalt and tris-ethylenediaminecobalt halides, perchlorides, nitrates and sulfates; [Ni2(trien)3]Cl4, [Pt(pn)3]Cl4, [Co2(trien)3]Cl6; cyanides K3[Fe(CN)6], K3[Co(CN)6], M3[W(CN)8] with M=Na, K, Rb, Cs; Ca2[Fe(CN)6], K4[Fe(CN)6], K4[Mo(CN)8], K4[W(CN)8], K4[Ru(CN)8], (Me4N)4[Fe(CN)6], (Pr4N)4[Fe(CN)6], K4[Mo(CN)8], (Me4N)4[Mo(CN)8], (Et4N)4[Mo(CN)8] and (Pr4N)4[Mo(CN)8]; phosphates Na4P2O7, Na4P4O12, Na5P3O10, Na6P6O18 and (Me4N)4P4O12.  相似文献   

18.
Using single crystal X-ray diffraction the structure of polynuclear [Ni6(OH)4(Piv)7(HOC4H8O)(HPiv)4], {K4[Ni12(CO3)2(Piv)16(OH)8(HOC4H8OH)2]}HPiv, {[Ni6(OH)4(Piv)6(HOC4H8O)(Me2CO)(HOC4H8OH)2]4×(Piv)4}, and {K[Ni2L2(Piv)3]} complexes, where HOC4H8OH is 1,4-butanediol, HPiv is pivalic acid, and L is the anion of nitroxyl radical 2,2,5,5-tetramethyl-4-(3′,3′,3′-trifluoro-2′-oxy-1′-propenyl)-3-imidazolin-1-oxyl is determined.  相似文献   

19.
The thermally stable solids Re2(CO)8[μ-InRe(CO)5]2 and Re4(CO)123-InRe(CO)5]4 could be obtained by treatment of In with Re2(CO)10 in a bomb tube. A mechanism of the formation of the latter cluster from the first one is proposed. Compared with Re2(CO)8[μ-InRe(CO)5]2, Re4(CO)123_InRe(CO)5]4 shows in polar solvents an unusual high stability, which can be explained by the higher coordination number of In with rhenium carbonyl ligands. Re4(CO)12-[μ3-InRe(CO)5]4 dissolves monomerically in acetone, where as Re2(CO)8[μ-InRe(CO)5]2 dissociates yielding Re(CO)5? anions. Single-crystal X-ray analyses of Re4(CO)123-InRe(CO)5]4 establish the metal skeleton. The central molecular fragment Re4(CO)12 contains a tetrahedral arrangement of four bonded Re atoms [ReRe 302.8 (5) pm]. The triangles of this fragment are capped with a μ3-InRe(CO)5 group each [InRe(terminal) 273.5 (7) pm; InRe (polyhedral) 281.8 (7) pm]. The bridging type of In atoms with the Re4 tetrahedron and the metal skeleton was realized for the first time. By treating Re4(CO)123-InRe(CO)5]4 with Br2 the existence of Re(CO)5 ligands could be proved by isolating BrRe(CO)5.  相似文献   

20.
Concerning the Reaction of Cp2TiCl2 with [C(NMe2)3][(CO)4FeC(O)NMe2] – Crystal Structure of [C(NMe2)3]2[FeCl4] The title compound forms by the reaction of Cp2TiCl2 with [C(NMe2)3][(CO)4FeC(O)NMe2] in THF solution. It crystallizes in the space group Pbcn with a = 1 566.6(3); b = 976.4(2); c = 1 580.4(4) pm; Z = 4; R = 3.8%. Each [FeCl4]2? in is surrounded by eight cations. Two cations each are connected with one Cl atom by relatively short H …? Cl contacts leading to a distortion of the tetrahedral geometry of the anion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号