首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Multivariate curve resolution-particle swarm optimization (MCR-PSO) algorithm is proposed to exploit pure chromatographic and spectroscopic information from multi-component hyphenated chromatographic signals. This new MCR method is based on rotation of mathematically unique PCA solutions into the chemically meaningful MCR solutions. To obtain a proper rotation matrix, an objective function based on non-fulfillment of constraints is defined and is optimized using particle swarm optimization (PSO) algorithm. Initial values of rotation matrix are calculated using local rank analysis and heuristic evolving latent projection (HELP) method. The ability of MCR-PSO in resolving the chromatographic data is evaluated using simulated gas chromatography–mass spectrometry (GC–MS) and high-performance liquid chromatography–diode array detection (HPLC–DAD) data. To present a comprehensive study, different number of components and various levels of noise under proper constraints of non-negativity, unimodality and spectral normalization are considered. Calculation of the extent of rotational ambiguity in MCR solutions for different chromatographic systems using MCR-BANDS method showed that MCR-PSO solutions are always in the range of feasible solutions like true solutions. In addition, the performance of MCR-PSO is compared with other popular MCR methods of multivariate curve resolution-objective function minimization (MCR-FMIN) and multivariate curve resolution-alternating least squares (MCR-ALS). The results showed that MCR-PSO solutions are rather similar or better (in some cases) than other MCR methods in terms of statistical parameters. Finally MCR-PSO is successfully applied in the resolution of real GC–MS data. It should be pointed out that in addition to multivariate resolution of hyphenated chromatographic signals, MCR-PSO algorithm can be straightforwardly applied to other types of separation, spectroscopic and electrochemical data.  相似文献   

2.
A sensitive, simple, and specific liquid chromatographic method coupled with electrospray ionization-mass spectrometry (MS) is presented for the determination of sertraline in plasma. With zaleplon as the internal standard, sertraline is extracted from the alkalized plasma with cyclohexane. The organic layer is evaporated and the residue is redissolved in the mobile phase of methanol-10 mmol/L ammonium acetate solution-acetonitrile (62:28:10, v/v/v). An aliquot of 20 microL is chromatographically analyzed on a Shimadzu ODS C18 column (5 microm, 150- x 4.6-mm i.d.) by means of selected-ion monitoring mode of MS. The calibration curve of sertraline in plasma exhibits a linear range from 0.5 to 25.0 ng/mL with a correlation coefficient of 0.9998. The limit of quantitation is 0.5 ng/mL. The intra- and interday variations (relative standard deviation) are less than 7.8% and 9.5% (n = 5), respectively. The application of this method is demonstrated for the analysis of sertraline plasma samples in a human pharmacokinetic study.  相似文献   

3.
A liquid chromatographic tandem mass spectrometric (LC-MS/MS) assay was developed and validated to determine valproic acid in human plasma. The method involved a solid-phase extraction of valproic acid and betamethasone valerate, an internal standard, from plasma and detection using an LC-MS/MS system with electrospray ionization source in negative ion mode. Separation was achieved within 3 min on a non-porous silica column with mobile phase containing ammonium acetate and methanol. Multiple reaction monitoring was utilized for detection monitoring at 142.89-142.89 for valproic acid and 457.21-457.21 for the internal standard. The calibration curve for valproic acid was linear over the range of 0.5-150 microg/mL. The limit of detection was 0.17 microg/mL and the lower limit of quantification was 0.5 microg/mL, when 0.2 mL plasma was used for extraction. The percentage coefficient of validation for accuracy and precision (inter- and intra-day) for this method was less than 9.5% with recovery ranging from 82.3 to 86.9% for valproic acid.  相似文献   

4.
A flow injection/tandem mass spectrometric assay was developed to quantitate SC-68328 in dog plasma using its stable isotopic analog [13C4]SC-68328 as an internal standard (IS). Since SC-68328, a manganese-based superoxide dismutase mimetic, is very unstable, very polar and adheres to silica-based high-performance liquid chromatographic columns, the analyte and IS were derivatized to their bis-isothiocyanate forms followed by a liquid-liquid extraction with methylene chloride and analyzed using positive ion electrospray mass spectrometric detection. SC-68328 was quantitated using the peak-height ratio of SC-68328 to its IS using MS/MS in the multiple reaction monitoring mode. The lower limit of quantitation of the assay was 0.25 microg ml(-1) SC-68328 in dog plasma with an inter-day precision of 11.8% and an accuracy of 113% (n = 12). Acceptable precision and accuracy were also obtained for concentrations in the calibration curve range (0.25-10 microg ml(-1) SC-68328 in dog plasma).  相似文献   

5.
Abstract

A high performance chromatographic method, using internal standard quantification, for the analysis of Itraconazole in human plasma is described. The standard curve was linear over the concentration range tested. The detection limit of the method was 250 ng. An authentic sample of both Itraconazole and the internal standard (ketoconazole) were used to establish the calibration curve.  相似文献   

6.
The biotoxins, azaspiracids (AZAs), from marine phytoplankton accumulate in shellfish and affect human health by causing severe gastrointestinal disturbance, diarrhea, nausea and vomiting. Specific and sensitive methods have been developed and validated for the determination of the most commonly occurring azaspiracid analogs. An LTQ Orbitrap mass spectrometer is a hybrid instrument that combines linear ion trap (LIT) mass spectrometry (MS) with high‐resolution Fourier transform (FT) MS and this was exploited to perform simultaneous ultra‐high‐resolution full‐scan MS analysis and collision‐induced dissociation (CID) tandem mass spectrometry (MS/MS). Using the highest mass resolution setting (100 000 FWHM) in full‐scan mode, the methodology was validated for the determination of six AZAs in mussel (Mytilus galloprovincialis) tissue extracts. Ultra‐high mass resolution, together with a narrow mass tolerance window of ±2 mDa, dramatically improved detection sensitivity. In addition to employing chromatographic resolution to distinguish between the isomeric azaspiracid analogs, AZA1/AZA6 and AZA4/AZA5, higher energy collisionally induced dissociation (HCD) fragmentation on selected precursor ions were performed in parallel with full‐scan FTMS. Using HCD MS/MS, most precursor and product ion masses were determined within 1 ppm of the theoretical m/z values throughout the mass spectral range and this enhanced the reliability of analyte identity. For the analysis of mussels (M. galloprovincialis), the method limit of quantitation (LOQ) was 0.010 µg/g using full‐scan FTMS and this was comparable with the LOQ (0.007 µg/g) using CID MS/MS. The repeatability data were; intra‐day RSD% (1.8–4.4%; n = 6) and inter‐day RSD% (4.7–8.6%; n = 3). Application of these methods to the analysis of mussels (M. edulis) that were naturally contaminated with azaspiracids, using high‐resolution full‐scan Orbitrap MS and low‐resolution CID MS/MS, produced equivalent quantitative data. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
A method for the determination of propamocarb in vegetables with liquid chromatography-electrospray ionisation mass spectrometry (LC-ESI-MS) was developed. The performance of a polymer-based analytical LC column for the separation was investigated. Residues of propamocarb were extracted from the matrix with methanol. Subsequently, the extract was directly injected into the LC-MS system, without any additional concentration or cleanup procedures. Separation of propamocarb from the matrix components was achieved on a polymethacrylate-based analytical column. Propamocarb was concurrently detected with electrospray ionisation mass spectrometry in the selected ion monitoring mode and two-stage full scan MS application. Quantitation was done with matrix-matched calibration standards of propamocarb. Unambiguous confirmation was achieved by comparison of the full scan product ion mass spectrum of the chromatographic peak in the sample with the spectrum of a standard solution of propamocarb at the same retention time. The analytical performance of the method was validated for five relevant matrices, spiking propamocarb at fortification levels from 0.05 to 15.0 mg kg(-1). This covers the range of maximum residue limits in agricultural commodities, stated in the Dutch national legislation. The mean recovery of propamocarb was better than 90% with a precision of less than 10% in both scanning applications. As could be concluded from the calibration curve and matrix background levels, observed in blank control samples, the estimated limit of detection was 25 microg kg(-1) for the two-stage full scan MS application. The method has been applied in a survey of 285 samples of lettuce, radish, leek, and cabbage for the presence of residues of propamocarb. In 50% of the samples analysed, a residue of propamocarb was detected.  相似文献   

8.
A new ion trap scan function for gas chromatography/mass spectrometry (GC/MS) quantitation is described that employs alternating mass-selective storage (rf/dc isolation) of ions from an analyte and its coeluting isotopically labeled internal standard. This scan includes two separate ionization/isolation/mass analysis sequences within the same scan function, each optimized for either the analyte or the internal standard. This results in alternating between analyzing the analyte and the internal standard during their coelution. The method is conceptually similar to using two different scan functions to analyze either the analyte or the internal standard in alternating scans; however, it is much faster because it eliminates the slow procedure of continuously downloading alternating scan functions from disk. This allows more data points to be obtained over a GC peak, resulting in more reproducible GC peak profiles as well as better sensitivity and precision. Results of calibration curves spanning four orders of magnitude (0.5 pg to 5 pg injected on column) obtained by using this method give excellent linear correlations (r 2 > 0.9990) and precision (relative standard deviations of triplicate injections < 10%).  相似文献   

9.
Signal suppression is a common problem in quantitative liquid chromatography/electrospray ionization multistage mass spectrometric (LC/ESI-MS(n)) analysis in environment samples, especially in highly loaded wastewater samples with highly complex matrix. Optimization of sample preparation and improvement of chromatographic separation are prerequisite to improve reproducibility and selectivity. Matrix components are reduced if not eliminated by optimization of sample preparation steps. However, extensive sample preparation may be time-consuming and risk the significant loss of some trace analytes. The best way to further compensate matrix effects is the use of an internal standard for each analyte. However, in a multi-component analysis, finding appropriate internal standards for every analyte is often difficult. In this present study, a more practical alternative option was sought. Matrix effects were assessed using the post-extraction addition method. By comparison of three different calibration approaches, it was found that matrix-matched calibration combined with one internal standard provides a satisfactory method for compensating for any residual matrix effects on all the analytes. Validating experiments on different sewage treatment plant (STP) influent samples analyzing for a range of phytoestrogens showed that this calibration method provided satisfactory results with concentration ratio 96.1-105.7% compared to those by standard addition.  相似文献   

10.
A highly sensitive, specific and rapid liquid chromatography–tandem mass spectrometry (LC–MS/MS) analytical method has been developed and validated for the determination of ospemifene in human plasma using ospemifene‐d4 as an internal standard. Solid‐phase extraction technique with Phenomenex Strata X‐33 μm polymeric sorbent cartridges (30 mg/1 mL) was used to extract the analytes from the plasma. The chromatographic separation was achieved on Agilent Eclipse XDB‐Phenyl, 4.6 × 75 mm, 3.5 μm column using the mobile phase composition of methanol and 20 mm ammonium formate buffer (90:10, v/v) at a flow rate of 0.9 mL/min. A detailed method validation was performed as per the US Food and Drug Administration guidelines and the calibration curve obtained was linear (r2 = 99) over the concentration range 5.02–3025 ng/mL. The API‐4500 MS/MS was operated under multiple reaction monitoring mode during the analysis. The proposed method was successfully applied to a pharmacokinetic study in healthy human volunteers after oral administration of an ospemifene 60 mg tablet under fed conditions.  相似文献   

11.
A rapid, simple, selective and sensitive LC‐MS/MS method was developed for the determination of curculigoside in rat plasma. The analytical procedure involves extraction of curculigoside and syringin (internal standard, IS) from rat plasma with a one‐step extraction method by protein precipitation. The chromatographic resolution was performed on an Agilent XDB‐C18 column (4.6 × 50 mm, 5 µm) using an isocratic mobile phase of methanol with 0.1% formic acid and H2O with 0.1% formic acid (45:55, v/v) at a flow rate of 0.35 mL/min with a total run time of 2.0 min. The assay was achieved under the multiple‐reaction monitoring mode using positive electrospray ionization. Method validation was performed according to US Food and Drug Administration guidelines and the results met the acceptance criteria. The calibration curve was linear over 4.00–4000 ng/mL (R = 0.9984) for curculigoside with a lower limit of quantification of 4.00 ng/mL in rat plasma. The intra‐ and inter‐day precisions and accuracies were 3.5–4.6 and 0.7–9.1%, in rat plasma, respectively. The validated LC‐MS/MS method was successfully applied to a pharmacokinetic study of curculigoside in rats after a single intravenous and oral administration of 3.2 and 32 mg/kg. The absolute bioavailability of curculigoside after oral administration was 1.27%. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
This work presents the development of a liquid chromatographic method based on modeling entire fast scan fluorimetric detection second-order data with the multivariate curve resolution alternating least squares algorithm, for the simultaneous determination of five marker pteridines in urine samples.The modeling strategy involves the building of a single MCR-ALS model composed of matrices augmented in the spectral mode, i.e. time profiles remain invariant while spectra may change from sample to sample. This approach allowed us to separate and determine the whole analytes at once.The developed approach enabled us to determine five of the most important metabolic disorder marker pteridines: biopterin, neopterin, isoxanthopterin, pterin and xanthopterin, three of them presenting emission spectra with the same emission wavelength maxima. In addition, some of these analytes present overlapped time profiles. As a consequence of using the entire data sets, a considerable reduction of the data processing experimental time can be achieved. Results are compared with a previous strategy in which data were split in five different regions, and information about the figures of merit of the new strategy compared with the previously reported strategy is reported.  相似文献   

13.
A fully automated high-throughput liquid chromatography/tandem mass spectrometry (LC-MS/MS) method was developed for terbinafine quantification in human plasma. The plasma samples were treated by liquid-liquid extraction (LLE) in 2.2 mL 96-deepwell plates. Terbinafine and the internal standard (IS) N-methyl-1-naphthalenemethylamine were extracted from human plasma by LLE, using a mixture of methyl t-butyl ether (MTBE)-hexane (70:30, v/v) as the organic solvent. All liquid transfer steps, including preparation of calibration standards and quality control samples, as well as the addition of the IS, were performed automatically by using robotic liquid handling workstations. After vortexing, centrifugation and freezing, the supernatant organic solvent was evaporated and reconstituted in a small volume of a reconstitution solution. Sample analysis was performed by reversed-phase LC-MS/MS, with positive ion electrospray ionization, using multiple reaction monitoring (MRM). The method had a very short sample preparation time and a chromatographic run time of 2.2 min. It was proved to have excellent sensitivity, specificity, accuracy as well as inter- and intraday precision for the quantification of terbinafine in human plasma. The calibration curve was linear for the range of concentrations 5.0-2000.0 ng/mL. The proposed method was applied to the rapid and reliable determination of terbinafine in a bioequivalence study after per os administration of 250 mg tablet formulations of terbinafine.  相似文献   

14.
An ultra‐performance liquid chromatography–tandem mass spectrometric (UPLC‐MS/MS) method was developed and validated to determine AV‐45 in rat plasma. After the addition of the internal standard benzophenone, plasma samples were pretreated by protein precipitation. Chromatographic separation was achieved on an Acquity UPLC BEH C18 column (50 × 2.1 mm, 1.7 µm) by gradient elution at a flow rate of 0.4 mL/min. Detection of analytes and internal standard (IS) was done by tandem mass spectrometry, operating in positive‐ion and multiple reaction monitoring mode. The method was fully validated for its sensitivity, selectivity, accuracy and precision, matrix effect and stability study. The calibration curve showed good linearity over the concentration range 2.00–1000 ng/mL for AV‐45. Intra‐ and inter‐day precisions were less than 7.6%, and accuracy ranged from 100.6 to 107.8%. There was no matrix effect. The validated method was successfully applied to a pharmacokinetic study of AV‐45 in rats. Additionally, the metabolism of AV‐45 in rat liver microsomes was also studied by ultra‐performance liquid chromatography combined with time‐of‐flight mass spectrometry (UPLC/TOF‐MS). With the help of chromatographic behavior and accurate mass measurements, the metabolites were characterized. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
考察了基体辅助激光解吸电离时间飞行质谱用于人参皂甙Rg3 定量分析时内标的选择。加入棉子糖作为内标时 ,Rg3 的定量标准曲线的回归系数R2 =0 .938,平均相对误差为 2 8 6 % ;加入性质相近的芦丁后 ,Rg3 的定量标准曲线的回归系数R2 =0 993,平均相对误差为 7 5 %。分辨率的提高以及采用Rg3 和内标物的质谱峰的相对面积来代表Rg3 的浓度可以使定量的重现性明显改善  相似文献   

16.
研究建立了以人血清中E2-16,16,17-d3为内标测定17β-雌二醇的液相色谱/串联质谱(ID-LC/MS/MS)方法。血清样品经固相萃取装置(SPE)提取雌二醇,乙酸乙酯萃取净化,吹干复溶后用10-乙基吖啶酮-2-磺酰氯(EASC)进行衍生。以Agilent Eclipse XDB-C18色谱分离柱,乙腈、水梯度洗脱,使用电喷雾三重四极杆串联质谱的多重反应监测模式测定,以校准曲线法进行定量。所建立的液相色谱同位素稀释串联质谱法(ID-LC/MS/MS)对于分析血清17β-雌二醇的批内、批间RSD分别为0.29%~0.73%和0.18%~0.28%,回收率为99.6%~100.2%,采用IFCC RELA比对(JCTLM比对)样品进行了方法比较,测定结果与其他实验室相比偏差在0.8%范围内。方法可作为人血清中17β-雌二醇含量测量参考方法。  相似文献   

17.
There is a great demand for simple, fast and accurate methods for quantification of volatile organic contaminants in soil samples. Solid-phase microextraction (SPME) has a huge potential for this purpose, but its application is limited by insufficient accuracy caused by a matrix effect. The aim of this research was to develop the method for BTEX quantification in soil using combined standard addition (SA) and internal standard (IS) calibration. Deuterated benzene (benzene-d6) was used as the internal standard for all analytes. The optimized method includes spiking replicate samples with different concentrations of BTEX standards and the same concentration of benzene-d6, equilibration of soil samples at 40 °C during 2 h, and SPME–GC–MS analysis. Precision and accuracy of IS and SA methods were compared on different soil matrices. Combined SA + IS method provided more precise calibration plots compared to the conventional SA calibration. The SA + IS calibration provided more precise and accurate results compared with a reference method based on solvent extraction followed by GC–MS when applied to BTEX quantification in real soil samples (spiked with diesel fuel and aged). Recoveries of BTEX from soil samples spiked with known concentrations of analytes using the developed method were in the range of 73–130% with RSD values less than 15% for all BTEX. The proposed simultaneous standard addition and internal standard approach can be advantageous and adopted for improved quantification of other toxic VOCs in soil.  相似文献   

18.
Dönmez OA  Aşçi B  Bozdoğan A  Sungur S 《Talanta》2011,83(5):591-1605
A simple and rapid analytical procedure was proposed for the determination of chromatographic peaks by means of partial least squares multivariate calibration (PLS) of high-performance liquid chromatography with diode array detection (HPLC-DAD). The method is exemplified with analysis of quaternary mixtures of potassium guaiacolsulfonate (PG), guaifenesin (GU), diphenhydramine HCI (DP) and carbetapentane citrate (CP) in syrup preparations. In this method, the area does not need to be directly measured and predictions are more accurate. Though the chromatographic and spectral peaks of the analytes were heavily overlapped and interferents coeluted with the compounds studied, good recoveries of analytes could be obtained with HPLC-DAD coupled with PLS calibration. This method was tested by analyzing the synthetic mixture of PG, GU, DP and CP. As a comparison method, a classsical HPLC method was used. The proposed methods were applied to syrups samples containing four drugs and the obtained results were statistically compared with each other. Finally, the main advantage of HPLC-PLS method over the classical HPLC method tried to emphasized as the using of simple mobile phase, shorter analysis time and no use of internal standard and gradient elution.  相似文献   

19.
In order to increase sample analysis throughput, the use of fast liquid chromatography in quantitative bioanalysis based on liquid chromatography coupled with tandem mass spectrometry (LC/MS/MS) has become prevalent. Therefore, it is important to increase the specificity of such bioanalytical methods. This can be done by enhancing both the chromatographic and mass resolving power. Increasing the mass spectrometric resolving power to minimize interference from endogenous compounds in the biological matrix is the subject of this paper. We present the results of our experience with developing and validating SRM-based, enhanced resolution bioanalytical methods using a new triple-quadrupole mass spectrometer with enhanced resolution capability. We have shown that SRM bioanalytical methods using better than unit-mass resolution (Q1 FWHM = 0.2 Th, Q3 FWHM = 0.7 Th) can be developed which are as rugged as unit resolution methods (Q1 FWHM = 0.7 Th, Q3 FWHM = 0.7 Th). The enhanced resolution methods require more attention to detail than unit resolution methods. For instance, the mass setting for precursor ion selection is more critical because the mass peak is narrower. Because of this, enhanced resolution methods may be more easily influenced by temperature changes in the laboratory. We have shown that there is good correlation between the shift in the precursor ion mass and the ambient temperature. Other studies carried out to investigate the effects on mass peak shape and response (both in the SIM and SRM mode) as the result of varying the FWHM revealed some interesting results. For instance, the decrease in response with the decrease in the FWHM was larger using SRM compared to that using SIM. However, the decrease in both SRM and SIM response with decreasing FWHM was significantly smaller compared with the decrease obtained using an older generation instrument. We demonstrate that, at concentrations near the limit of detection, the signal specificity can be improved by using an enhanced resolution method. To compare the performance of an enhanced resolution method against a unit resolution method under optimized mass spectrometric conditions, we analyzed calibration standards and quality control samples using a lower limit of quantitation that could be easily achieved by either method. Under these conditions, the two methods were essentially the same, demonstrating that the enhanced resolution method is as accurate, precise and rugged as the unit resolution method. We propose system suitability procedures, based on precursor ion scan, product ion scan, SRM with fractional mass changes, or SIM with a narrow scan width, for the updating of the SRM set masses before the start of analysis. We also recommend that Q1 SRM masses be determined during and at the end of analysis in order to ascertain whether or not the precursor masses have shifted during the course of the analysis.  相似文献   

20.
MALDI-TOF mass spectrometry quantification is hampered by the poor reproducibility of the signal intensity and by molecular-mass and compositional discrimination. The addition of a suitable compound as an internal standard increases reproducibility and allows a calibration curve to be constructed. The concept was also verified with synthetic polymers but no instructions for practical implementation were given [H. Chen, M. He, J. Pei, H. He, Anal. Chem. 75 (2003) 6531-6535.], even though synthetic polymers are generally non-uniform with respect to molecular mass and composition and access to the polymer of the same molecular mass distribution and composition as that of the quantified one is thus the exception rather than rule. On the other hand, relative quantification of polymers e.g., the content of the precursor polymer in a batch of a modified polymer, is usually sought. In this particular case, the pure precursor is usually available and the modified polymer can serve as an internal standard. However, the calibration curve still cannot be constructed and the use of the internal standard has to be combined with the method of standard addition in which the precursor polymer is added directly to the analyzed sample. The experiments with simulated modified polymers, mixtures of poly(ethylene glycol) (PEG) and poly(ethylene glycol) monomethyl ether (MPEG) of similar molecular-mass distribution, revealed a power dependence of the PEG/MPEG signal-intensity ratio (MS ratio) on the PEG/MPEG concentrations ratio in the mixture (gravimetric ratio). The result was obtained using standard procedures and instrumentation, which means that the basic assumption of the standard-addition method, i.e., the proportionality of the MS and gravimetric ratios, generally cannot be taken for granted. Therefore, the multi-point combined internal-standard standard-addition method was developed and experimentally verified for the quantification of the precursor in modified polymers. In this method, the two parameters of the power-type calibration curve - the proportionality constant and the exponent-are assumed. If the exponent strongly deviates from unity the minority component can be significantly underrepresented in the spectrum. Therefore, the absence of the precursor polymer signals in the MALDI-TOF mass spectrum of a modified polymer sample does not prove the absence of the precursor in the sample. Such a conclusion has to be corroborated by the standard-addition method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号