首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Photoemission techniques (core level, valence band and partial yield spectroscopies) using synchrotron radiation as the excitation source have been applied to study the changes in the surface electronic structure of the (110) cleavage face of III-V semiconductor surfaces as a function of different ad-atom coverages. In this paper we concentrate on Au overlayers on GaSb and in particular address the problem of the mechanism for Fermi level pinning and the formation of Schottky barrier heights. It appears that the Fermi level pinning is fully established at a small fraction of a monolayer coverage. Core level spectroscopy gives evidence for a strong metal-semiconductor interaction leading to decomposition of GaSb at the interface. The experimental results form the basis for proposing a new model for the Schottky barrier based on defect states at the interface.  相似文献   

4.
5.
Control of the band-edge offsets at heterojunctions between organic semiconductors allows efficient operation of either photovoltaic or light-emitting diodes. We investigate systems where the exciton is marginally stable against charge separation and show via E-field-dependent time-resolved photoluminescence spectroscopy that excitons that have undergone charge separation at a heterojunction can be efficiently regenerated. This is because the charge transfer produces a geminate electron-hole pair (separation 2.2-3.1 nm) which may collapse into an exciplex and then endothermically (E(A)=100-200 meV) back transfer towards the exciton.  相似文献   

6.
There has been renewed interest in the structure of III-V compound semiconductor (001) surfaces caused by recent experimental and theoretical findings, which indicate that geometries different from the seemingly well-established dimer models describe the surface ground state for specific preparation conditions. I review briefly the structure information available on the (001) surfaces of GaP, InP, GaAs and InAs. These data are complemented with first-principles total-energy calculations. The calculated surface phase diagrams are used to explain the experimental data and reveal that the stability of specific surface structures depends largely on the relative size of the surface constituents. Several structural models for the Ga-rich GaAs (001)(4×6) surface are discussed, but dismissed on energetic grounds. I discuss in some detail the electronic properties of the recently proposed cation-rich GaAs (001)ζ(4×2) geometry. Received: 18 May 2001 / Revised version: 23 July 2001 / Published online: 3 April 2002  相似文献   

7.
The present status and key issues of surface passivation technology for III-V surfaces are discussed in view of applications to emerging novel III-V nanoelectronics. First, necessities of passivation and currently available surface passivation technologies for GaAs, InGaAs and AlGaAs are reviewed. Then, the principle of the Si interface control layer (ICL)-based passivation scheme by the authors’ group is introduced and its basic characterization is presented. Ths Si ICL is a molecular beam epitaxy (MBE)-grown ultrathin Si layer inserted between III-V semiconductor and passivation dielectric. Finally, applications of the Si ICL method to passivation of GaAs nanowires and GaAs nanowire transistors and to realization of pinning-free high-k dielectric/GaAs MOS gate stacks are presented.  相似文献   

8.
We present the atomic structure of the c(8 x 2) reconstructions of InSb-, InAs-, and GaAs-(001) surfaces as determined by surface x-ray diffraction using direct methods. Contrary to common belief, group III dimers are not prominent on the surface, instead subsurface dimerization of group III atoms takes place in the second bilayer, accompanied by a major rearrangement of the surface atoms above the dimers to form linear arrays. By varying the occupancies of four surface sites the (001)-c(8 x 2) reconstructions of III-V semiconductors can be described in a unified model.  相似文献   

9.
10.
11.
The dipolar-interaction factors which determine the longitudinal—transverse splitting of excitons in anistropic materials are evaluated for hexagonal and tetragonal Bravais lattices. The results are applied to an analysis of the exciton lines in PbI2.  相似文献   

12.
This paper examines linear- k terms in the gamma(8) valence-band Hamiltonian for heterostructures of zinc-blende-type semiconductors. In bulk crystals such terms are known to be extremely small, due to their origin as relativistic perturbations from d and f orbitals. However, in heterostructures there is a nonvanishing contribution from p orbitals. This contribution is an order of magnitude larger than the corresponding bulk term, and it should give rise to an optical anisotropy comparable to (although smaller than) that seen in recent experiments on the quantum-well Pockels effect.  相似文献   

13.
14.
王志刚  张平 《中国物理》2007,16(2):517-523
The anomalous Hall effect of heavy holes in semiconductor quantum wells is studied in the intrinsic transport regime, where the Berry curvature governs the Hall current properties. Based on the first--order perturbation of wave function the expression of the Hall conductivity the same as that from the semiclassical equation of motion of the Bloch particles is derived. The dependence of Hall conductivity on the system parameters is shown. The amplitude of Hall conductivity is found to be balanced by a competition between the Zeeman splitting and the spin--orbit splitting.  相似文献   

15.
We report on the new type of photoinduced magnetization in ferromagnetic (Ga,Mn)As thin films. Optically generated spin-polarized holes change the orientation of ferromagnetically coupled Mn spins and cause a large change in magnetization, being 15% of the saturation magnetization, without the application of a magnetic field. The memorization effect has also been found as a trace after the photoinduced magnetization. The observed results suggest that a small amount of nonequilibrium carrier spins can cause collective rotation of Mn spins presumably through the p-d exchange interaction.  相似文献   

16.
We study the zitterbewegung of electronic wave packets in III-V zinc-blende semiconductor quantum wells due to spin-orbit coupling. Our results suggest a direct experimental proof of this fundamental effect, confirming a long-standing theoretical prediction. For electron motion in a harmonic quantum wire, we numerically and analytically find a resonance condition maximizing the zitterbewegung.  相似文献   

17.
18.
19.
20.
Inelastic spin relaxation and spin splitting epsilon(s) in lateral quantum dots are studied in the regime of strong in-plane magnetic field. Because of both the g-factor energy dependence and spin-orbit coupling, epsilon(s) demonstrates a substantial nonlinear magnetic field dependence similar to that observed by Hanson et al. [Phys. Rev. Lett. 91, 196802 (2003)]. It also varies with the in-plane orientation of the magnetic field due to crystalline anisotropy of the spin-orbit coupling. The spin relaxation rate is also anisotropic, the anisotropy increasing with the field. When the magnetic length is less than the "thickness" of the GaAs dot, the relaxation can be an order of magnitude faster for B ||[100] than for B || [110].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号