首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Results of the experiments on neutron energy spectra measurements within broad energy range from 5 x 10(-7) to 2 x 10(2) MeV aboard the Mir orbital station and equivalent neutron dose estimation are presented. Four measurement techniques were used during the experiments. The shape of spectra and their absolute values are in good agreement. According to those experiments, an equivalent neutron dose depends upon effective shielding thickness and spacecraft mass. The neutron dose mentioned is comparable with that of ionizing radiation. Neutron flux levels measured aboard the Mir station have shown that a neutron spectrometer involving broad energy range will be used within the radiation monitoring systems in manned space flights.  相似文献   

2.
The elemental composition of polyimide film contamination was studied by the RBS and XFA methods. The films were exposed to the space environment aboard the Mir orbital space station during the KOMPLAST in-flight experiment. It was shown that the prevalent deposit element was silicon, which agrees with measurements performed on other spacecrafts.  相似文献   

3.
Radiation measurements made onboard the MIR Orbital Station have spanned nearly a decade and covered two solar cycles, including one of the largest solar particle events, one of the largest magnetic storms, and a mean solar radio flux level reaching 250 x 10(4) Jansky that has been observed in the last 40 years. The cosmonaut absorbed dose rates varied from about 450 microGy day-1 during solar minimum to approximately half this value during the last solar maximum. There is a factor of about two in dose rate within a given module, and a similar variation from module to module. The average radiation quality factor during solar minimum, using the ICRP-26 definition, was about 2.4. The drift of the South Atlantic Anomaly was measured to be 6.0 +/- 0.5 degrees W, and 1.6 +/- 0.5 degrees N. These measurements are of direct applicability to the International Space Station. This paper represents a comprehensive review of Mir Space Station radiation data available from a variety of sources.  相似文献   

4.
The dynamics of the formation of ordered structures of macroparticles charged by photoemission under the action of solar radiation under microgravitational conditions without the use of electrostatic traps to confine the particles is studied experimentally and theoretically. The working conditions needed for the formation of structures of charged macroparticles are chosen as a result of a numerical solution of the problem posed, the particle charges and the interparticle interaction parameter are determined, and the characteristic times specifying the dynamics of the formation of an ordered system of macroparticles are calculated. The behavior of an ensemble of macroparticles under the effect of solar radiation is observed experimentally on board the Mir space station. An analysis and comparison of the results of the experimental and theoretical investigations permit drawing a conclusion regarding the possibility of the existences of extended ordered formations of macroparticles charged by photoemission under microgravitational conditions. Zh. éksp. Teor. Fiz. 114, 2004–2021 (December 1998)  相似文献   

5.
Passive radiation dosimeters were exposed aboard the Mir Orbital Station over a substantial portion of the solar cycle in order to measure the change in dose and dose equivalent rates as a function of time. During solar minimum, simultaneous measurements of the radiation environment throughout the habitable volume of the Mir were made using passive dosimeters in order to investigate the effect of localized shielding on dose and dose equivalent. The passive dosimeters consisted of a combination of thermoluminescent detectors to measure absorbed dose and CR-39 PNTDs to measure the linear energy transfer (LET) spectrum from charged particles of LET infinity H2O > or = 5 keV/micrometers. Results from the two detector types were then combined to yield mean total dose rate, mean dose equivalent rate, and average quality factor. Contrary to expectations, both dose and dose equivalent rates measured during May-October 1991 near solar maximum were higher than similar measurements carried out in 1996-1997 during solar minimum. The elevated dose and dose equivalent rates measured in 1991 were probably due to a combination of intense solar activity, including a large solar particle event on 9 June 1991, and the temporary trapped radiation belt created in the slot region by the solar particle event and ensuing magnetic storm of 24 March 1991. During solar minimum, mean dose and dose equivalent rates were found to vary by factors of 1.55 and 1.37, respectively, between different locations through the interior of Mir. More heavily shielded locations tended to yield lower total dose and dose equivalent rates, but higher average quality factor than did more lightly shielding locations. However, other factors such as changes in the immediate shielding environment surrounding a given detector location, changes in the orientation of the Mir relative to its velocity vector, and changes in the altitude of the station also contributed to the variation. Proton and neutron-induced target fragment secondaries, not primary galactic cosmic rays, were found to dominate the LET spectrum above 100 keV/micrometers. This indicates that in low earth orbit, trapped protons in the South Atlantic Anomaly are responsible for the major fraction of the total dose equivalent.  相似文献   

6.
This paper reports results from the first measurements made on the exterior of a LEO spacecraft of mean dose equivalent rate and average quality factor as functions of shielding depth for shielding less than 1 g/cm2 Al equivalent. Two sets of measurements were made on the outside of the Mir Orbital Station; one near solar maximum in June 1991 and one near solar minimum in 1997. Absorbed dose was measured using stacks of TLDs. LET spectrum from charged particles of LET infinity H2O > o r= 5keV/micrometers was measured using stacks of CR-39 PNTDs. Results from the TLD and PNTD measurements at a given shielding depth were combined to yield mean total dose rate, mean dose equivalent rate, and average quality factor. Measurements made near solar maximum tend to be greater than those made during solar minimum. Both mean dose rate and mean dose equivalent rate decrease by nearly four orders of magnitude within the first g/cm2 shielding illustrating the attenuation of both trapped electrons and low-energy trapped protons. In order to overcome problems with detector saturation after standard chemical processing, measurement of LET spectrum in the least shielded CR-39 PNTD layer (0.005 g/cm2 Al) was carried out using an atomic force microscope.  相似文献   

7.
Data from the R-16 radiation dosimeter mounted to the outside of the Mir space station are analyzed to determine the radiation environment and absorbed radiation dose inside Mir during the 22nd solar cycle. The outcome of the analysis demonstrated that data could be collected over a long period, dynamics of the daily mean absorbed doses correlated well with parameters of solar activity, seasonal variations of absorbed doses during the solar cycle were clearly observed, during periods of unfavorable conditions the absorbed dose rate within the living modules can reach up to 30 mrad/min for more than 10 minutes, and overall, the radiation environment inside the space station was low.  相似文献   

8.
A passive neutron dosemeter with thermoluminescence and etched-track detectors was used in the space station MIR in 1995 and 1997 and during some shuttle flights to MIR. High neutron doses of about 200 microSv d-1 were measured with track detectors, while the contribution of protons to the track density was estimated to be small. An active personal dosemeter based on silicon diodes providing a direct readout, improved sensitivity and spectrometric properties is proposed for additional monitoring. Firstly, measurements with a prototype were performed in the stray radiation fields of the CERN-EU Reference Radiation Facility. When mounted on a phantom at different positions, both the passive and the active dosemeter provide the directional distribution of neutrons via an unfolding procedure. This can be helpful for a better understanding of the complex radiation field in space and for comparisons with calculations.  相似文献   

9.
A tissue equivalent proportional counter designed to measure the linear energy transfer spectra (LET) in the range 0.2-1250 keV/micrometer was flown in the Kvant module on the Mir orbital station during September 1994. The spacecraft was in a 51.65 degrees inclination, elliptical (390 x 402 km) orbit. This is nearly the lower limit of its flight altitude. The total absorbed dose rate measured was 411.3 +/- 4.41 microGy/day with an average quality factor of 2.44. The galactic cosmic radiation (GCR) dose rate was 133.6 microGy/day with a quality factor of 3.35. The trapped radiation belt dose rate was 277.7 microGy/day with an average quality factor of 1.94. The peak rate through the South Atlantic Anomaly was approximately 12 microGy/min and nearly constant from one pass to another. A detailed comparison of the measured LET spectra has been made with radiation transport models. The GCR results are in good agreement with model calculations; however, this is not the case for radiation belt particles and again points to the need for improving the AP8 omni-directional trapped proton models.  相似文献   

10.
11.
The radiation environment inside a shielded volume is highly complex, consisting of both charged and neutral particles. Since the inception of human space flights, the charged particle component has received virtually all of the attention. There is however, a significant production of secondary neutrons, particularly from the aluminum structure in low earth orbiting spacecrafts. The interactions of galactic cosmic rays (GCR), and solar energetic particles with the earth's atmosphere produce a non-isotropic distribution of albedo neutrons. Inside any reasonable habitable module, the average radiation quality factor of neutrons is about 4-5 times larger than the corresponding average quality factor of charged particles. The measurement of neutrons and their energy spectra is a difficult problem due the intense sources of charged particles. This paper reviews the results of Shuttle flight experiments (made during both solar maximum and solar minimum) to measure the contribution of neutrons to the dose equivalent, as well as theoretical calculations to estimate the appropriate range of neutron energies that contribute most to the dose equivalent.  相似文献   

12.
13.
Since it was first proposed, the space solar power station(SSPS) has attracted great attention all over the world; it is a huge space system and provides energy for Earth. Although several schemes and abundant studies on the SSPS have been proposed and conducted, it is still not realized. The reason why SSPS is still an idea is not only because it is a giant and complex project, but also due to the requirement for various excellent space materials. Among the diverse required materials, we believ...  相似文献   

14.
15.
16.
A quantum system whose state vector belongs to a finite-dimensional Hilbert space is considered. If this space has a dimension that is a composite number, one can factor the space into a tensor product of sub-spaces. An observable that acts only in one of these subspaces is called a partial measurement. Some of the properties and the interpretation of such partial measurements are discussed.  相似文献   

17.
空间站快速充电事件的机理研究   总被引:1,自引:0,他引:1       下载免费PDF全文
黄建国*  易忠  孟立飞  赵华  刘业楠 《物理学报》2013,62(9):99401-099401
空间站等大型航天器由于采用高压太阳电池阵而引发的 带电问题成为近年来航天器带电研究领域的热点问题. 近年来观测到国际空间站(ISS)在出地影瞬间产生的"快速带电"事件 (也称"异常带电") , 再度引起了对低轨道航天器充电效应的深入研究. "快速带电"事件的特征为, 集中出现在出地影的瞬间, 在几秒内快速上升到较高电位(30—70 V), 然后在几十秒时间内缓慢衰降, 相对高压电池阵本身引起的结构体带电(称为"正常带电", 一般在30 V以下)严重得多. 目前国际上对"快速带电"的研究尚不充分. 本文在Furguson等人机理研究工作的基础上, 首次建立了描述"快速带电"事件的物理模型, 定量揭示了其充电过程的主要机理. 根据该模型对国际空间站的"快速带电"进行计算, 结果与观测到的典型充电脉冲符合, 模型预测的快速带电事件的统计规律也与观测结果基本一致. 关键词: 表面充电 等离子体 空间站 高压太阳电池阵  相似文献   

18.
Measurements to characterize the shielding properties of the EMU space suit and a human phantom were performed using 155 and 250 MeV proton beams at the Loma Linda University Medical Center (LLUMC). The beams simulate radiation encountered in low-Earth orbit (LEO), where trapped protons having kinetic energies on the order of 100 MeV are abundant. Protons at these energies can penetrate many g/cm2 of matter and deliver a dose to the skin and internal organs. The dose can be enhanced or reduced by shielding, either from the space suit or the self-shielding of the body, but minimization of the risk depends on knowledge of the detailed energy spectrum and on the dose responses of the critical organs. Nuclear interactions of energetic protons in materials produce highly ionizing secondary radiation that increases dose and dose-equivalent beyond what would be expected simply from increasing ionization energy loss along the Bragg curve. Here, we present results obtained using silicon detectors in the LLUMC proton beams. Bare-beam data were taken to characterize the beams and calibrate the detectors. Data were also taken with the detectors placed inside a human phantom within the EMU suit. Because many secondaries have very high LET and short range, they are best measured in passive track detectors such as CR-39 or in much thinner silicon detectors than those used here. Our data complement the CR-39 data in the LET range below , where CR-39 is insensitive. Our results suggest that optimizing the radiation shielding properties of space suits is a formidable task—simply adding mass may not reduce the net risk, because adding material to reduce the dose delivered at or near the skin by low-energy particles can increase the dose delivered by more energetic particles to sites deeper in the body. The depth-dose relation therefore depends critically on the energy distribution of the incident protons.  相似文献   

19.
A passive neutron dosemeter based on nuclear track detectors and TLD's was used in 1995 and 1997 on the MIR station and in Space Shuttle flights to MIR. As it is equipped with neutron converters and shieldings of different types the track detector system allows the neutron dose equivalent to be determined in rough energy intervals. The results of the measurements on the MIR station and in the Space Shuttle flights are presented and the influence of charged particles in the complex mixed radiation field in space is discussed. Improvements are possible by means of a new active neutron dosemeter which is under development at the PTB. First measurements with a prototype in the high-energy reference fields at CERN are presented and discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号