首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Surface properties of fluorinated single-walled carbon nanotubes   总被引:1,自引:0,他引:1  
Single-walled carbon nanotubes (SWCNTs) were fluorinated at several different temperatures. The change of atomic and electronic structures of fluorinated SWCNTs was investigated using X-ray photoelectron spectroscopy (XPS), electrical resistivity measurements and transmission electron microscopy (TEM). The amount of doped fluorine increases with increasing doping temperature, and the fluorine atoms are covalently attached to the side-wall of the SWCNTs. From Raman spectra and HRTEM study, the strong fluorination on the SWCNTs leads to the breaking of carbon–carbon bonds and the disintegration of tube structure. Several intermediate phases of fluorinated SWCNTs are observed during e-beam irradiation in HRTEM.  相似文献   

3.
The structure evolution of twinned Ru nanoparticles supported on carbon nanotubes rearranging into Ru single nanocrystals under the microwave irradiation and the exposed surface of Ru single crystals were observed, which provided new insights into synthesis and application of metal nanoparticle catalysts.  相似文献   

4.
The gradient corrected Perdew-Burke-Ernzerhof density functional in conjunction with a 3-21G basis set and periodic boundary conditions was employed to investigate the geometries and energies of C(2)F fluorinated armchair single wall carbon nanotubes (F-SWNT's) with diameters ranging from 16.4 to 4.2 A [(12,12) to (3,3)] as well as a C(2)F graphene sheet fluorinated on one side only. Using an isodesmic equation, we find that the thermodynamic stability of F-SWNT's increases with decreasing tube diameter. On the other hand, the mean bond dissociation energies of the C-F bonds increase as the tubes become thinner. The C-F bonds in the (5,5) F-SWNT's are about as strong as those in graphite fluoride (CF)(n)() and are also covalent albeit slightly (<0.04 A) stretched. Whereas a fluorine atom is found not to bind covalently to the concave surface of [60]fullerene, endohedral covalent binding is possible inside a (5,5) SWNT despite a diameter similar to that of the C(60) cage.  相似文献   

5.
Fluorinated single walled carbon nanotubes (SWNTs) undergo a facile Diels-Alder [4 + 2] cycloaddition with a range of dienes resulting in a C ratio substituent ratio between 20 ratio 1 to 32 ratio 1; IR, Raman, AFM and (13)C NMR characterization are consistent with sidewall functionalization.  相似文献   

6.
Lai L  Song W  Lu J  Gao Z  Nagase S  Ni M  Mei WN  Liu J  Yu D  Ye H 《The journal of physical chemistry. B》2006,110(29):14092-14097
The effects of F doping on the structural and electronic properties of the (5, 5) single-walled boron nitride nanotube (BNNT) are investigated by using the density functional theory method. The chemiadsorption of F maintains the hexagonal BN network, increases the lattice constant, and introduces acceptor impurity states. On the other hand, substitutional doping of F destroys the hexagonal BN network, decreases the lattice constant, but does not alter the insulating feature of the BNNT. The observed insulator-to-semiconducting transition, a lattice contraction, and a highly disordered atom arrangement in the sidewall of BNNTs upon F doping appear to be most reasonably attributed to a codoping of dominating substitutional F over chemiabsorbed F, which can induce deep donor impurity states, a lattice contraction, and a destruction of the hexagonal BN network simultaneously.  相似文献   

7.
Upon laser irradiation in air, metallic single-walled carbon nanotubes (SWNTs) in carbon nanotube thin film can be destroyed in preference to their semiconducting counterparts when the wavelength and power intensity of the irradiation are appropriate and the carbon nanotubes are not heavily bundled. Our method takes advantage of these two species' different rates of photolysis-assisted oxidation, creating the possibility of defining the semiconducting portions of carbon nanotube (CNT) networks using optical lithography, particularly when constructing all-CNT FETs (without metal electrodes) in the future.  相似文献   

8.
In continuation of the previous series of studies, polymerization of octadecyl methacrylate (ODMA) induced by electron beams has been investigated in a form of its multilayer or monolayer in an attempt to prepare a stable thin polymer film having a regular layer structure. ODMA multilayers were prepared by the Langmuir-Blodgett technique and irradiated with electron beams from a Van de Graaff accelerator. Multiple reflection infrared spectroscopy and x-ray diffractometry revealed that the ODMA multilayer was polymerized to give a thin polymer film having a regular layered structure when irradiated in nitrogen atmosphere, but no indication of polymerization was observed when irradiated in air. A preliminary study on the ODMA monolayer at a nitrogen–water interface indicated that the monolayer was polymerized.  相似文献   

9.
The in situ ATRP (atom transfer radical polymerization) "grafting from" approach was successfully applied to graft poly(methyl methacrylate) (PMMA) onto the convex surfaces of multiwalled carbon nanotubes (MWNT). The thickness of the coated polymer layers can be conveniently controlled by the feed ratio of MMA to preliminarily functionalized MWNT (MWNT-Br). The resulting MWNT-based polymer brushes were characterized and confirmed with FTIR, 1H NMR, SEM, TEM, and TGA. Moreover, the approach has been extended to the copolymerization system, affording novel hybrid core-shell nanoobjects with MWNT as the core and amphiphilic poly(methyl methacrylate)-block-poly(hydroxyethyl methacrylate) (PMMA-b-PHEMA) as the shell. The approach presented here may open an avenue for exploring and preparing novel carbon nanotubes-based nanomaterials and molecular devices with tailor-made structure, architecture, and properties.  相似文献   

10.
Palladium nanoparticles were produced and supported on multiwalled carbon nanotubes (MWCNT) by gamma irradiation. A solution with a specific ratio of 2:1 of water-isopropanol was prepared and mixed with palladium chloride and the surfactant sodium dodecyl sulfate (SDS). The gamma radiolysis of water ultimately produces Pd metallic particles that serve as nucleation seeds. Isopropanol is used as an ion scavenger to balance the reaction, and the coalescence of the metal nanoparticles was controlled by the addition of SDS as a stabilizer. The size and distribution of nanoparticles on the carbon nanotubes (CNT) were studied at different surfactant concentrations and radiation doses. SEM, STEM and XPS were used for morphological, chemical and structural characterization of the nanostructure. Nanoparticles obtained for doses between 10 and 40 kGy, ranged in size 5-30 nm. The smaller nanoparticles were obtained at the higher doses and vice versa. Histograms of particle size distributions at different doses are presented.  相似文献   

11.
In this article, we report the results of high-energy electron beam (e-beam) irradiation of polymer thin films made of poly(semiperfluoroalkyl methacrylate)s (PR F MA s ) and propose plausible chemical reactions that may cause their solubility to change in fluorous liquids. It was observed that the polymer films were converted to a more soluble state under low exposure doses of e-beam, possibly due to main-chain scission. However, the films became insoluble with higher doses of e-beam. Three hypotheses were proposed to explain the reduction in solubility, and we used data from Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, mass spectrometry (MS), and nanoindentation to eliminate the less probable hypotheses. The results derived from e-beam-irradiated thin films of three PR F MA s showed that the radical-related Norrish Type I and II pathways may not be the main decomposition routes. The data also suggested that sufficient scission reactions of the perfluorooctyl moieties of PR F MA s do not occur by e-beam. We therefore assumed that the decrease in solubility of the fluorinated polymers results from intermolecular crosslinking reactions between the free radicals and reactive moieties generated on the perfluorooctyl groups by the e-beam. The unique imaging mechanism of PR F MA s may be developed further to synthesize radiation-sensitive materials working under e-beam and extreme ultraviolet (λ = 13.5 nm) lithography conditions for advanced patterning applications. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 2672–2680  相似文献   

12.
A low-temperature flexible process, named "chemical transfer", was developed to assemble well-aligned carbon nanotube (ACNT) structures onto various substrates. The technology was featured by (1) in situ functionalization of ACNTs with reactive functional groups during the CVD process and (2) covalently bonded interface with a self-assembled monolayer (SAM) of conjugated thiol molecules as the bridging ligand and conduction path at the ACNT/gold interface. The effectiveness of the in situ functionalization was characterized by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). I-V response and the interfacial strength of the chemically transferred structure were studied. Results showed an Ohmic contact, low electrical resistivity, and improved CNT-substrate adhesion. This novel technique shows promising applications for positioning ACNTs as electrical interconnects or thermal interface materials on temperature-sensitive substrates.  相似文献   

13.
The structural and electronic characteristics of fully hydrogenated armchair and zigzag carbon nanotubes have been determined by quantum chemical methods. With use of line group symmetries, the structures of nanotubes up to 10 nm in diameter could be optimized by periodic B3LYP calculations. “In–out” isomerism is shown to significantly stabilize perhydrogenated carbon nanotubes, the energetically most favorable structures being those with 1/3–1/2 of the carbon atoms endo-hydrogenated. In favored nanotubes the ratio of endo- to exo-hydrogens is 1:1, the stabilities increasing as a function of the diameter of the nanotube. The calculated band gaps indicate that the perhydrogenated carbon nanotubes are insulators.  相似文献   

14.
Nanoscale defects in the outer tube to preserve the electrical and optical features of the inner tube can be engineered to exploit the intrinsic properties of double walled carbon nanotubes (DWCNTs) for various promising applications. We demonstrated a selective way to make defects in the outer tube by the fluorination of DWCNTs followed by the thermal detachment of the F atoms at 1000 °C in argon. Fluorinated DWCNTs with different amounts of F atoms were prepared by reacting with fluorine gas at 25, 200, and 400 °C that gave the stoichiometry of CF0.20, CF0.30, and CF0.43, respectively. At the three different temperatures used, we observed preservation of the coaxial morphology in the fluorinated DWCNTs. For the DWCNTs fluorinated at 25 and 200 °C, the strong radial breathing modes (RBMs) of the inner tube and weakened RBMs of the outer tube indicated selective fluorine attachment onto the outer tube. However, the disappearance of the RBMs in the Raman spectrum of the DWCNTs fluorinated at 400 °C showed the introduction of F atoms onto both inner and outer tubes. There was no significant change in the morphology and optical properties when the DWCNTs fluorinated at 25 and 200 °C were thermally treated at 1000 °C in argon. However, in the case of the DWCNTs fluorinated at 400 °C, the recovery of strong RBMs from the inner tube and weakened RBMs from the outer tube indicated the selective introduction of substantial defects on the outer tube while preserving the original tubular shape. The thermal detachment of F atoms from fluorinated DWCNTs is an efficient way to make highly defective outer tubes for preserving the electrical conduction and optical activity of the inner tubes.  相似文献   

15.
A procedure was developed for fabricating cathodes based on fluorinated carbon nanotubes for primary lithium current sources. The procedure allows reaching significantly higher levels of the discharging potential and capacity due to better homogenization and compaction of the electrode active mass.  相似文献   

16.
The generation of nanoscale interconnects and supramolecular, hierarchical assemblies enables the development of a number of novel nanoscale applications. A rational approach toward engineering a robust system is through chemical recognition. Here, we show the in situ mineralization of crystalline CdTe quantum dots on the surfaces of oxidized multiwalled carbon nanotubes (MWNTs). We coordinate metallic precursors of quantum dots directly onto nanotubes and then proceed with in situ growth. The resulting network of molecular-scale "fused" nanotube-nanocrystal heterojunctions demonstrates a controlled synthetic route to the synthesis of complex nanoscale heterostructures. Extensive characterization of these heterostructures has been performed using scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, UV-visible spectroscopy, and X-ray diffraction (XRD).  相似文献   

17.
The radiation-crosslinked polyethersulfone (RX-PES) films were prepared by means of electron-beam irradiation under nitrogen atmosphere at 230 °C, where the temperature is around the glass transition temperature of PES (222 °C). The gel formation of RX-PES films was observed when the absorbed doses exceeded 300 kGy, which indicated the crosslinking structure formation. The G(S) of 0.10 and G(X) of 0.23 were calculated according to the Y-crosslinking mechanism. The irradiation was also performed at ambient temperature for comparison. There was no gel formation of the irradiated films even for the absorbed doses as high as 2250 kGy. The thermal properties of the original and irradiated PES films were measured by means of DSC and TGA analyses. The chemical structure of the original and the irradiated films was analyzed by means of FT-IR ATR and UV-vis spectroscopies.  相似文献   

18.
Effect of Ar(+) ion irradiation on the structure of pristine and fluorinated single-wall carbon nanotubes (SWCNTs) was examined using transmission electron microscopy (TEM), Raman, and x-ray photoelectron spectroscopy (XPS). The TEM analysis revealed retention of tubular structures in both irradiated samples while Raman spectroscopy and XPS data indicated a partial destruction of nanotubes and formation of oxygen-containing groups on the nanotube surface. From similarity of electronic states of carbon in the irradiated pristine and fluorinated SWCNTs observed by XPS, it was suggested that defluorination of nanotubes proceeded with breaking of C-F bonds.  相似文献   

19.
Azide-functionalization of single-walled carbon nanotubes (SWCNTs) was achieved by electrochemical oxidation of N3 in situ. The functionalized nanotubes were characterized in details by single internal reflection infrared spectroscopy (ATR-FTIR) and thermogravimetic analysis (TGA/MS). The results revealed that a covalent C-N bond had formed and this might provide an effective method for the preparation of azide-functionalized materials, especially carbon materials. The degree of functionaliza- tion was measured by X-ray photoelectron spectroscopy (XPS).  相似文献   

20.
The thermal decomposition of fluorinated single-walled carbon nanotubes (F-SWNTs), known to result in pristine SWNTs, has been investigated by freezing the gaseous products formed at temperatures between 50 and 500 degrees C under high vacuum in an argon matrix at 10-20 K and analyzing the trapped species by IR spectroscopy. The major products of F-SWNT decomposition are carbonyl fluoride (COF2) below 300 degrees C and CF4 above 300 degrees C. For comparison, graphite fluoride is stable thermally up to 300 degrees C under these conditions, and the major gas-phase species at temperatures below 500 degrees C are CF4 and the CF3 radical. F-SWNTs are thermally less stable than graphite fluoride, and etching of the nanotubes is observed at lower thermolysis temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号