首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The behavior of electrochemical cells Pt(sponge)/Na5TbSi412/Na0.65Co2(cell I) and Pt(sponge)/Na5TbSi412/Pt(sponge) (cell II) is studied by, respectively, potentiometric and impedance methods in oxygen and argon atmospheres at 50–300°C. Dependence of potential of cell I on the oxygen concentration is affected by the grain size of platinum sponge and the temperature. At 50–200°C the coarse-grained platinum electrode in contact with solid electrolyte Na5TbSi412 exhibits an oxygen function characterized by the potential-determining reaction 2(g) + 2 + 2 = 2 + . An impedance method shows the triple-phase boundary 2, Pt(sponge)/Na5TbSi412 to be reversible with respect to oxygen. The reversibility is realized by minority charge carriers in the solid electrolyte, i.e. by oxygen ions.  相似文献   

2.
Novel dendrite‐like silver particles were electrodeposited on Ti substrates from a supporting electrolyte‐free 30 mmol L?1 Ag(NH3)2+ solution, to synthesize the den‐Ag/Ti electrode. Binary AgxCoy/Ti electrodes with different Ag:Co atomic ratios were further obtained by electrodeposition of Co particles on the den‐Ag/Ti electrode. Polyaniline (PANI) modified den‐Ag/Ti and AgxCoy/Ti electrodes, PANI(n)‐den‐Ag/Ti and PANI(n)‐AgxCoy/Ti, were also obtained by cyclic voltammetry at different numbers of cycles (n) in acidic and alkaline solutions containing aniline, respectively. All these electrodes exhibit high electroactivity for oxygen reduction reaction (ORR) in alkaline solution and their electroactivities follow the order: PANI(15)‐Ag31Co69/Ti>Ag31Co69/Ti>PANI(20)‐den‐Ag/Ti>den‐Ag/Ti. Among them, PANI(15)‐Ag31Co69/Ti displays the highest electrocatalytic activity for ORR with a much positive onset potential of 0 V (vs. Ag/AgCl) and a high ORR current density of 1.2 mA cm?2 at ?0.12 V (vs. Ag/AgCl). The electrocatalysts are electrochemically insensitive to methanol and ethanol oxidation, and, as cathode electrocatalysts of direct alcohol fuel cells, can resist poisoning by the possible alcohol crossover from the anode.  相似文献   

3.
Phase equilibria in the La–Sr–Co–Ni–O system were studied in air at 1100°. The samples for the study were synthesized by the standard ceramic and citrate processes. The limiting solubility and structure of La1-xSrxCo1-yNiyO3- and (La1-xSrx)2Co1-yNiyO4 solid solutions were determined by Xray powder diffraction analysis. La1-xSrxCo1-yNiyO3- solid solutions with 0 x 0.5 have a distorted rhombohedral perovskitelike structure (R c space group). An increase in the strontium concentration reduces the rhombohedral distortions, and the compounds with x < 0.5 have an ideal cubic structure (Pm3m space group). (La1-xSrx)2Co1-yNiyO4 crystals have a tetragonal K2NiF4 type unit cell (I4/mmm space group). The relationships between unit cell parameters and compositions were obtained for singlephase La1-xSrxCo1-yNiyO3- and (La1-xSrx)2Co1-yNiyO4 samples. The existence regions of La1-xSrxCo1-yNiyO3- and La1-xSrx)2Co1-yNiyO4 solid solutions were distinguished on P–T phase diagrams.  相似文献   

4.
The effects of Co alloying to Pt catalyst and Nafion pretreatment by NaClO4 solution on the rate-determining step (RDS) of oxygen reduction at Nafion-impregnated Pt-dispersed carbon (Pt/C) electrode were investigated as a function of the potential step ΔE employing potentiostatic current transient (PCT) technique. For this purpose, the cathodic PCTs were measured on the pure Nafion-impregnated and partially Na+-doped Nafion-impregnated Pt/C and PtCo/C electrodes in an oxygen-saturated 1 M H2SO4 solution and analyzed. From the shape of the cathodic PCTs and the dependence of the instantaneous current on the value of ΔE, it was confirmed that oxygen reduction at the pure Nafion-impregnated electrodes is controlled by charge transfer at the electrode surface mixed with oxygen diffusion in the solution below the transition potential step |ΔE tr| in absolute value, whereas oxygen reduction is purely governed by oxygen diffusion above |ΔE tr|. On the other hand, the RDS of oxygen reduction at the partially Na+-doped Nafion-impregnated electrodes below |ΔE tr| is charge transfer coupled with proton migration, whereas above |ΔE tr|, it becomes proton migration in the Nafion electrolyte instead of oxygen diffusion. Consequently, it is expected in real fuel cell system that the cell performance is improved by Co alloying since the electrode reaches the maximum diffusion (migration) current even at small value of |ΔE|, whereas the cell performance is aggravated by Nafion pretreatment due to the decrease in the maximum diffusion (migration) current.  相似文献   

5.
Multi‐walled carbon nanotubes (MWCNTs) decorated with PdxCoy (the nominal atomic ratios of Pd to Co were 3:1, 3:1.5, 3:2, 3:3, respectively) nanoparticles (denoted as PdxCoy/MWCNTs ) were fabricated by a simple pyrolysis process, in which room temperature ionic liquids (RTILs) of butyl‐3‐methylimidazolium hexafluorophosphate (denoted as [BMIM]PF6) was used as the solvent. X‐ray diffraction (XRD) and transmission electron microscopy (TEM) were all used to characterize the PdxCoy/MWCNTs catalysts, showing that the PdxCoy particles were dispersed on the surface of the MWCNTs with an average particle size of ~25.0 nm. The electro‐catalytic activity of the PdxCoy/MWCNTs catalysts toward ethanol oxidation reaction (EOR) was examined by cyclic voltammetry (CV). It was revealed that the onset potential was ~90 mV lower and the peak current was about four times higher for ethanol oxidation for Pd3Co1.5/MWCNTs compared to those of Pd3Co1/MWCNTs. The possible catalysis mechanisms of the Pd3Co1.5/MWCNTs toward EOR were also discussed.  相似文献   

6.
The voltammetry method with a linear potential scan is used for investigating the effect the electrode material (Ni, Co, electrodes on the basis of cobalt oxides modified with carbon) exerts on the reduction of gaseous oxygen at interfaces solid fluoride-conducting electrode LaF3:Eu2+/electrode, O2, and conjugated processes. Properties of the modified electrodes are characterized by the impedance spectroscopy, scanning electron microscopy, and x-ray photoelectron spectroscopy methods. The oxygen reaction is irreversible at the LaF3:Eu2+|Ni (or Co) interfaces. At the interface of LaF3:Eu2+ with modified electrodes Co (C n at %), where n = 5 and 9, mobile forms of oxygen are reversible and the reduction of gaseous and chemisorbed oxygen is controlled by diffusion with different effective kinetic parameters.  相似文献   

7.
The structural evolution of the Co3O4 fine powders prepared by rheological phase reaction and pyrolysis method upon different temperature has been investigated using X‐ray diffraction (XRD) topography. The electrochemical performance of Co3O4 electrode materials for Li‐ion batteries is studied in the form of Li/Co3O4 cells. The reversible capacity as high as 930 mAh/g for the Co3O4 sample heat‐treated at 600 °C is achieved and sustained over 30 times charge‐discharge cycles at room temperature. The detailed information concerning the reaction mechanism of Co3O4 active material together with lithium ion is obtained through ex‐situ XRD topography, X‐ray photoelectron spectroscopy (XPS) analysis and cyclic voltammetry (CV) technique. And it is revealed that a “two‐step” reaction is involved in the charge and discharge of the Li/Co3O4 cells, in which Co3O4 active material is reversibly reduced into xCoO(3 ‐ x)CoO and then into metallic Co.  相似文献   

8.
The interaction of the catalyst 5.16 wt % Pt/-Al2O3 with 4, 2, 2, and 4 + 2 pulses is studied using a setup involving the differential scanning calorimeter DSC–111 and a system for chromatographic analysis. Comparison of the results obtained with analogous data on Ni/Al2O3 and Co/Al2O3 suggests that methane activation occurs via a common pathway via dissociative chemisorption on the metal surface with the formation of 2 and carbon on all the catalysts studied. Carbon dioxide activation on Pt/Al2O3 differs from its activation on Ni()/Al2O3. It follows from the enthalpy of formation that carbon on Pt/Al2O3 is graphite-like in contrast to carbide carbon on Ni(Co)/Al2O3. This graphite carbon is more stable and less reactive.  相似文献   

9.
The [M=Fe (1), x=2.08, y=1.58; M=Co (2), x=2.5, y=2; Ni (3), x=2.5, y=2] compounds have been synthesized using mild hydrothermal conditions at 170 °C during five days. Single-crystals of (1) and (2), and polycrystalline sample of (3) were obtained. These isostructural compounds crystallize in the orthorhombic system, space group Aba2, with a=9.9598(2), b=18.8149(4) and c=8.5751(2) Å for (1), a=9.9142(7), b=18.570(1) and c=8.4920(5) Å for (2) and a=9.8038(2), b=18.2453(2) and c=8.4106(1) Å for (3), with Z=8 in the three phases. An X-ray diffraction study reveals that the crystal structure is composed of a three-dimensional skeleton formed by [MO5F] and [MO4F2] (M=Fe, Co and Ni) octahedra and [HPO3] tetrahedra, partially substituted by [PO4] tetrahedra in phase (1). The IR spectra show the vibrational modes of the water molecules and those of the (HPO3)2− tetrahedral oxoanions. The thermal study indicates that the limit of thermal stability of these phases is 195 °C for (1) and 315 °C for (2) and (3). The electronic absorption spectroscopy shows the characteristic bands of the Fe(II), Co(II) and Ni(II) high-spin cations in slightly distorted octahedral geometry. Magnetic measurements indicate the existence of global antiferromagnetic interactions between the metallic centers with a ferromagnetic transition in the three compounds at 28, 14 and 21 K for (1), (2) and (3), respectively. Compound (1) exhibits a hysteresis loop with remnant magnetization and coercive field values of 0.72 emu/mol and 880 Oe, respectively.  相似文献   

10.
Ti/RhO x electrodes were prepared at 400–600° by thermal decomposition of RhCl3. Oxide layers were characterized by cyclic voltammetry in H2SO4 as well as in KOH solution. The voltammetric charge exhibited a maximum at 470°C in both cases. 2 evolution from KOH solution was studied by steady-state polarization curves. Only one Tafel slope close to 40 mV was observed over the explored current range. The reaction order with respect to was negative and fractional. A mechanism is proposed for H2 evolution on RhO x in KOH solution. The stability of the electrodes was tested by comparing the voltammetric charge before and after the 2 evolution experiments. Stability was observed to increase with increasing calcination temperature. The same is the case for the electrocatalytic activity normalized to unit surface charge.  相似文献   

11.
A novel electrocatalyst support material, nitrogen-doped carbon (CNx)-modified Fe3O4 (Fe3O4-CNx), was synthesized through carbonizing a polypyrrole-Fe3O4 hybridized precursor. Subsequently, Fe3O4-CNx-supported Pt (Pt/Fe3O4-CNx) nanocomposites were prepared by reducing Pt precursor in ethylene glycol solution and evaluated for the oxygen reduction reaction (ORR). The Pt/Fe3O4-CNx catalysts were characterized by X-ray diffraction, Raman spectra, X-ray photoelectron spectroscopy, scanning electron microscopy, and transmission electron microscopy. The electrocatalytic activity and stability of the as-prepared electrocatalysts toward ORR were studied by cyclic voltammetry and steady-state polarization measurements. The results showed that Pt/Fe3O4-CNx catalysts exhibited superior catalytic performance for ORR to the conventional Pt/C and Pt/C-CNx catalysts.  相似文献   

12.
The existence boundaries, structures, and transport parameters of Bi1 ? x Co x [Bi12O14]Mo5O20 ± δ and Bi[Bi12O14]Mo5 ? y Co y O20 ± δ solid solutions, which have a unique columnar structure, were studied. Electrical conductivity in these solid solutions was studied by impedance spectroscopy.  相似文献   

13.
The synthesis of filled skutterudite compounds (Ce or Y)yFexCo4-xSb12, through a solid state reaction using chloride of Ce or Y, high purity powder of Co, Fe, and Sb as starting materials, was investigated. (Ce or Y)yFexCo4-xSb12 (x = 0 1.0,y = 0 0.15) compounds were obtained at 850 1 123 K. The results of Rietveld analysis demonstrate that (Ce or Y)yFexCo4-xSb12 synthesized by a solid state reaction possesses a filled skutterudite structure. The filling fraction of Ce or Y obtained by Rietveld analysis agrees well with the composition obtained by chemical analysis. The lattice constant of CeyFexCo4-xSb12 increases with increasing substitution of Fe at Co sites, and with an increasing Ce filling fraction in the Sb-dodecahedron voids. The lattice thermal conductivity of (Ce or Y)yFexCo4-xSb12 decreases significantly with an increasing Ce or Y filling fraction in the voids and with substitution of Fe at Co sites.  相似文献   

14.
Meso-macroporous Co3O4 electrode is synthesized by drop coating with a mixed solution containing Co(OH)2 colloid, polystyrene spheres, and carbowax (namely polyethylene glycol), followed by calcining at 400?°C to remove polystyrene spheres and carbowax. For comparison, nonporous Co3O4 and mesoporous Co3O4 electrodes are prepared by drop coating with Co(OH)2 colloid and with a mixed solution containing Co(OH)2 colloid and carbowax under the same condition, respectively. Capacitive property of these electrodes is measured by cyclic voltammetry, potentiometry and electrochemical impedance spectroscopy. The results show that meso-macroporous Co3O4 electrode exhibits larger specific capacitance than those of nonporous Co3O4 electrode and mesoporous Co3O4 electrode at various current densities. The specific capacitance of meso-macroporous Co3O4 electrode at the current density of 0.2?A?g?1 is 453?F?g?1. Meanwhile, meso-macroporous Co3O4 electrode possesses the highest specific capacitance retention ratio at the current density ranging from 0.2 to 1.0?A?g?1, indicating that meso-macroporous Co3O4 electrode suits to high-rate charge?Cdischarge.  相似文献   

15.
A general epoxidation of aromatic and aliphatic olefins has been developed under mild conditions using heterogeneous CoxOy–N/C (x=1,3; y=1,4) catalysts and tert‐butyl hydroperoxide as the terminal oxidant. Various stilbenes and aliphatic alkenes, including renewable olefins, and vitamin and cholesterol derivatives, were successfully transformed into the corresponding epoxides with high selectivity and often good yields. The cobalt oxide catalyst can be recycled up to five times without significant loss of activity or change in structure. Characterization of the catalyst by XRD, TEM, XPS, and EPR analysis revealed the formation of cobalt oxide nanoparticles with varying size (Co3O4 with some CoO) and very few large particles with a metallic Co core and an oxidic shell. During the pyrolysis process the nitrogen ligand forms graphene‐type layers, in which selected carbon atoms are substituted by nitrogen.  相似文献   

16.
FeOxHy and Fe-containing Ni/Co oxyhydroxides are the most-active catalysts for the oxygen evolution reaction (OER) in alkaline media. However, the activity of Fe sites appears strongly dependent on the electrode-substrate material and/or the elemental composition of the matrix in which it is embedded. A fundamental understanding of these interactions that modulate the OER activity of FeOxHy is lacking. We report the use of cyclic voltammetry and chronopotentiometry to assess the substrate-dependent activity of FeOxHy on a number of commonly used electrode substrates, including Au, Pt, Pd, Cu, and C. We also evaluate the OER activity and Tafel behavior of these metallic substrates in 1 M KOH aqueous solution with Fe3+ and other electrolyte impurities. We find that the OER activity of FeOxHy varies by substrate in the order Au>Pd≈Pt≈Cu>C. The trend may be caused by differences in the adsorption strength of the Fe oxo ion on the substrate, where a stronger adhesion results in more adsorbed Fe at the interface during steady-state OER and possibly a decreased charge-transfer resistance at the FeOxHy-substrate interface. These results suggest that the local atomic and electronic structure of [FeO6] units play an important role in catalysis of the OER as the activity can be tuned substantially by substrate interactions.  相似文献   

17.
The electrochemical depositions of Pt microparticles and KI film were successfully carried out on glassy carbon electrodes (GCE), gold electrodes (GE), and indium tin oxide electrodes (ITO). The electrochemical studies of Pt micro/KI film on GCE show that the film was stable, active at pH 1.5 electrolyte solutions. The Pt microparticle/KI film modified ITO electrodes were examined by using scanning electron microscopy (SEM) and atomic force microscopy (AFM) techniques. The SEM and AFM results show that the Pt particle sizes were in the range of 120 nm–1.4 μm, respectively. The proposed film on GCE shows efficient electrocatalysis for oxygen, Cr2O reduction by using cyclic voltammetry. Further the electrochemical oxidation of sodium meta‐arsenite (As(III)), H2O2 were successfully carried out and the detection of H2O2 in real samples has been validated.  相似文献   

18.
We report a flame‐reaction method to synthesize high‐performance SmxCoy (x=1, y=5; x=2, y=17) particles on a multigram scale. This flame reaction allows the controlled decomposition of Sm(NO3)3 and Co(NO3)2 to 320 nm SmCo‐O (SmCoO3 + Co3O4) particles. A 5.8 g sample of SmCo3.8‐O particles was coated with CaO and then reduced at 900 °C by Ca to give 4.2 g of 260 nm SmCo5 particles. The SmCo5 particles are strongly ferromagnetic and the aligned particles in epoxy resin exhibit a large room‐temperature coercivity (Hc) of 41.8 kOe and giant (BH)max (maximum magnetic energy product) of 19.6 MGOe, the highest value ever reported for SmCo5 made by chemical methods. This synthesis can be extended to synthesize Sm2Co17 particles, providing a general approach to scaling up the synthesis of high‐performance SmxCoy nanomagnets for permanent magnet applications.  相似文献   

19.
利用氨挥发诱导法在CdSe/TiO2纳米管阵列表面负载一层NixCo3-xO4。采用SEM、XRD、XPS、UV-Vis对样品进行表征,通过线性扫描伏安法测定光阳极的释氧电势来评价其光电水氧化活性。结果表明:表面NixCo3-xO4是尖晶石结构;相对于CdSe/TiO2纳米管阵列光阳极,NixCo3-xO4/CdSe/TiO2光阳极能将光电氧化水的过电势降低430 mV。Ni离子的引入使得NixCo3-xO4表面富含三价阳离子(Ni3+,Co3+),从而促进CdSe/TiO2光阳极光电水氧化的进行。  相似文献   

20.
The states of supported vanadium and the nature of activation of ammonia adsorbed on vanadium sites of V x /Ti2 catalysts are studied by 51V NMR spectroscopy and diffuse-reflectance IR Fourier-transform (DRIFT) spectroscopy using cluster quantum chemical calculations of N3 adsorption. We employ the V x /Ti2 catalyst of two types: the monolayer catalyst in which vanadium is located on the surface of well-crystallized anatase and the catalyst in which vanadium embedded in the anatase lattice at a rather great depth. It is shown that ammonia is predominantly adsorbed on Lewis acid sites of the monolayer catalyst, whereas most of N3 adsorbed on the catalyst containing bulk vanadium is in the form of ammonium ions. Analysis of experimental and calculated data suggests that, in the monolayer catalyst, N3 molecules in the selective reduction of nitrogen oxides are activated on Lewis acid sites. Ammonia activation involves the dissociation of the N–H bond in a coordinated molecule, which results in the formation of the amide V–N2 group and a water molecule coordinated by a V5+ ion. It is likely that, in the case of the catalyst containing bulk vanadium, this reaction occurs with the predominant participation of ammonium ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号