首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We have determined γ-hexachlorocyclohexane (lindane) and its metabolites in urine, serum and feces samples from rats using HPLC-UV-Vis and confirmation of mass with matrix assisted laser desorption/ ionization-time of flight (MALDI-TOF) analysis. Samples were collected from rats treated orally with lindane (17.6 mg/kg; 1/5 of LD50) or vehicle for 2 weeks. Lindane and metabolites were extracted from samples with hexane and analyzed. The HPLC–MALDI-TOF is highly sensitive to the point of detecting very low level (5 ppm) of lindane and metabolites. The HPLC-UV-Vis analysis confirmed the presence of lindane in urine (386–1652 ppm), serum (207–371 ppm) and feces (5–74 ppm). Control samples had no peak corresponding to lindane. MALDI-TOF analysis of urine and serum samples showed a major peak at 293 m/z, whereas feces showed a minor peak at 292–293 m/z, which were consistent with the peak obtained for standard lindane (293 m/z). Our data indicates that HPLC-UV-Vis–MALDI-TOF combo method is sensitive for detecting and quantifying lindane and its metabolites in serum, urine and feces. Our results further showed that minor quantities of lindane and metabolites were excreted through feces confirming that the main pathway for excretion of lindane and metabolites is through urine.  相似文献   

2.
A large fraction of the known human metabolome belong to organic acids. However, comprehensive profiling of the organic acid sub-metabolome is a major analytical challenge. In this work, we report an improved method for detecting organic acid metabolites. This method is based on the use of liquid–liquid extraction (LLE) to selectively extract the organic acids, followed by using differential isotope p-dimethylaminophenacyl (DmPA) labeling of the acid metabolites. The 12C-/13C-labeled samples are analyzed by liquid chromatography Fourier-transform ion cyclotron resonance mass spectrometry (LC–FTICR–MS). It is shown that this LLE DmPA labeling method offers superior performance over the method of direct DmPA labeling of biofluids such as human urine. LLE of organic acids reduces the interference of amine-containing metabolites that may also react with DmPA. It can also remove water in a biofluid that can reduce the labeling efficiency. Using human urine as an example, it is demonstrated that about 2500 peak pairs or putative metabolites could be detected in a 30-min gradient LC–MS run, which is about 3 times more than that detected in a sample prepared using direct DmPA labeling. About 95% of the 1000 or so matched metabolites to the Human Metabolome Database (HMDB) are organic acids. It is further shown that this method can be used to handle as small as 10 μL of urine. We believe that this method opens the possibility of generating a very comprehensive profile of the organic acid sub-metabolome that will be useful for comparative metabolomics applications for biological studies and disease biomarker discovery.  相似文献   

3.
An analytical method was developed for the identification of primary vitamin D3 metabolites in human urine using liquid chromatography tandem mass spectrometry in positive mode. Urine samples were purified using C18 solid-phase extraction cartridges and analytical separations were performed by reversed phase liquid chromatography in gradient mode using ammonium acetate (0.01 mol L?1) and acetonitrile as the mobile phases. Identification and structural elucidation of the metabolites were carried out by comparison with mass spectral fragmentation behavior of vitamin D3 and retention characteristics. Three primary urinary vitamin D3 metabolites were identified as 25-hydroxyvitamin D3, 1α,25-dihydroxyvitamin D3 and vitamin D3 sulphate, respectively.  相似文献   

4.
Thirty-two novel urea/thiourea compounds as potential kinase inhibitor were designed, synthesized and evaluated for their cytotoxic activity on breast (MCF7), colon (HCT116) and liver (Huh7) cancer cell lines. Compounds 10, 19 and 30 possessing anticancer activity with IC50 values of 0.9, 0.8 and 1.6 μM respectively on Huh7 cells were selected for further studies. These hit compounds were tested against liver carcinoma panel. Real time cell electronic sensing assay was used to evaluate the effects of the compounds 10, 19 and 30 on the growth pattern of liver cancer cells. Apoptotic cell death and cell cycle analysis upon treatment of liver carcinoma cells with hit compounds were determined. A significant apoptotic cell death was detected upon treatment of Huh7 and Mahlavu cells with compound 30 after 48 h of treatment. Additionally, compound 10 caused cell cycle arrest at G0/G1 phase. Mutagenicity of hit compounds was evaluated. Assertively, these compounds were not found to be mutagenic on Salmonella typhimurium strains TA98 and TA100. To understand the binding modes of the synthesized compounds, molecular docking studies were performed using the crystal data of VEGFR and Src-kinase enzymes in correlation with anticancer activities.  相似文献   

5.
Qualitative screening procedures have been developed for the rapid detection and identification of the metabolites of nerve agents in the urine samples and extracts using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The combination of negative electrospray ionization (ESI) using a C18 column and water-methanol mobile phase modified with ammonium formate provides a rapid screening procedure for nerve agent degradation products with limit of detection of 1 ng/mL in the precursor-ion analysis. Also, determination of the alkyl methylphosphonic acids was carried out by the SRM scan mode with the limit of detection of 0.1 ng/mL. These procedures will be applicable to the trace analysis of metabolites of nerve agents in human urine matrices in the Organisation for the Prohibition of Chemical Weapons (OPCW) proficiency test.  相似文献   

6.
The appearance of a new APINAC compound (AKB-57, ACBL(N)-018, adamantan-1-yl-1-pentyl-1H-indazol-3-carboxylate) in the Russian market of psychoactive drugs led to the need in setting measures of state control over its turnover and in solving the problem of categorizing this compound as a potentially hazardous psychoactive substance. To establish these control measures, it was necessary to determine the appropriate chromatographic–mass spectrometric characteristics and to search for its metabolites for their subsequent automated detection. The structure of an APINAC molecule has significant similarity with the molecules of other synthetic cannabinoids. In this paper, primary information on the metabolism of APINAC in the body of rats is presented. A number of putative metabolites, which are the products of hydrolysis of the initial structure and additional monohydroxylation of these products, carbonylation and carboxylation of the lateral N-pentyl chain of indazole-containing metabolites, were detected in rat urine by liquid chromatography–mass spectrometry in the mode of measurement of exact masses and gas chromatography–mass spectrometry. It was found that the formation of glucuronides is characteristic for 1-adamantol and its monohydroxylated metabolite and for the indazole-containing product of hydrolysis of APINAC. The presented mass spectra and retention characteristics of the detected metabolites can help in the detection of these (or similar) compounds in human urine.  相似文献   

7.
Humans can be exposed to mycotoxins through the food chain. Mycotoxins are mainly found as contaminants in food and could be subsequently excreted via biological fluids such as urine or human breast milk in native or metabolised form. Since breast milk is usually supposed as the only food for new-borns, the occurrence of mycotoxins in thirty-five human milk samples was evaluated by a newly developed method based on QuEChERS extraction and UHPLC–HRMS detection. The method described here allows the detection of target mycotoxins in order to determine the quality of this initial feeding. The method has been fully validated, with recoveries ranging from 64% to 93% and relative standard deviations (RSD, %) being lower than 20%. Using the method described, non-metabolised mycotoxins such as ZEA, NEO, NIV, ENA, ENA1, ENB, ENB1 and metabolites, such as ZEA metabolites, HT-2, DOM and T-2 triol were detected in human milk samples. Results obtained help to estimate the exposure of mothers and infants to mycotoxins. Moreover, to the best of our knowledge, this is the first work describing the simultaneous detection, quantification and screening of mycotoxins and their metabolites in human mature milk.  相似文献   

8.
A new, simple, sensitive and specific liquid chromatography/electrospray ionization tandem mass spectrometric (LC/ESI‐MS/MS) method in precursor ion scanning (PIS) mode has been developed for the rapid detection of methylprednisolone acetate (MPA) and its metabolites in rat urine. A suitable product ion specific for methylprednisolone (MP) and MPA was selected after a fragmentation study on 20 (cortico)steroids at different collision energies (5–40 eV). Urine samples were simply treated with acetonitrile then dried in a SpeedVac system. The method was validated and compared with other PIS methods for detecting corticosteroids in human urine. It was more sensitive, with limit of detection (LOD) and lower limit of quantitation (LLOQ), respectively, of 5 and 10 ng mL?1. The method was applied for the analysis of rat urine collected before and after (24, 48, 72 h) intra‐articular (IA) injection of a marketed formulation of MPA (Depo‐Medrol®). MS/MS acquisitions were taken at different collision energies for the precursor ions of interest, detected in PIS mode, to verify the MP‐related structure. Six different metabolites were detected in rat urine, and their chemical structures were assigned with a computational study. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
Ondansetron, a 5‐hydroxytryptamine type 3 (5‐HT3) receptor antagonist, is regarded as an excellent candidate to treat chemotherapy‐ and radiotherapy‐induced nausea and vomiting. To better understand the metabolic profiles of ondansetron in human urine, the metabolites were analyzed using liquid chromatography/mass spectrometry (LC/MSn). Urine samples were collected after oral administration of 8 mg ondansetron to healthy volunteers. Then samples were treated by solid‐phase extraction and detected with LC/MSn. Besides ondansetron, in human urine, a total of 19 metabolites including 13 new metabolites were detected and identified via comparing the retention time and product ion spectra with those of reference standards isolated and characterized. The results showed that ondansetron was metabolized via hydroxylation, glucuronidation, sulfation and minor N‐demethylation in human. LC/MSn was demonstrated to be useful and sensitive in the metabolic study of ondansetron.  相似文献   

10.
A series of highly oxidative new cembranoids with diverse structural features such as a dienoate moiety (sarcophytonolides S – U, 13) or an α,β-unsaturated ε-lactone (sartrolides H – J, 46) were obtained from Hainan soft coral Sarcophyton trocheliophorum, along with known related analogues 713. It is an extremely challenging work to determine the absolute configurations of these metabolites. For compounds 1, 3 and 4, solution TDDFT calculation of ECD and specific rotation were applied in combination with conformational analysis and NMR data to determine their relative and absolute configurations, leading to the revision of relative configuration of 14. The absolute configurations of compounds 810 were determined by the solid-state TDDFT-ECD approach, and that of 8 was further confirmed by single-crystal X-ray diffraction experiment with Cu Kα radiation. In the bioassays, compound 8 exhibited not only moderate protein tyrosine phosphatase 1B (PTP1B) inhibitory activity (IC50?=?15.4?μM) but also moderate antibacterial activity against Staphylococcus aureus Newman strain (MIC50?=?250?μM).  相似文献   

11.
Xylazine is used in veterinary medicine for sedation, anesthesia, and analgesia. It has also been reported to be misused as a horse doping agent, a drug of abuse, a drug for attempted sexual assault, and as source of accidental or intended poisonings. So far, no data concerning human metabolism have been described. Such data are necessary for the development of toxicological detection methods for monitoring drug abuse, as in most cases the metabolites are the analytical targets. Therefore, the metabolism of xylazine was investigated in rat and human urine after several sample workup procedures. The metabolites were identified using gas chromatography (GC)–mass spectrometry (MS) and liquid chromatography (LC) coupled with linear ion trap high-resolution multistage MS (MS n ). Xylazine was N-dealkylated and S-dealkylated, oxidized, and/or hydroxylated to 12 phase I metabolites. The phenolic metabolites were partly excreted as glucuronides or sulfates. All phase I and phase II metabolites identified in rat urine were also detected in human urine. In rat urine after a low dose as well as in human urine after an overdose, mainly the hydroxy metabolites were detected using the authors’ standard urine screening approaches by GC–MS and LC–MS n . Thus, it should be possible to monitor application of xylazine assuming similar toxicokinetics in humans.
Figure
Reconstructed high-resolution mass chromatograms indicating xylazine and its phase I metabolites as well as the mass spectra with structures of xylazine and one of its hydroxy metabolites  相似文献   

12.
X-Ray structural investigations of the 1:1 crystalline complexes formed between [Diquat][PF6]2 and (i) the bisformyl dibenzo-30-crown-10 derivative 2 and (ii) the dimethyl dibenzo-30-crown-10 derivative 4 reveal that in both cases, charge transfer, as well as electrostatic binding and weak [C—···O] hydrogen bonding combine to give the cortlexes their remarkable stabilities; in acetone solution, the stability constants for the 1:1 complexes involving 2, 3, and 4 are 2100, 50000, and 48000 M-1, respectively.  相似文献   

13.
H. X. Chen  Y. Chen  P. Du  F. M. Han 《Chromatographia》2007,65(7-8):413-418
In-vivo and in-vitro metabolism of atropine has been investigated by use of a highly specific and sensitive LC–MS n method. Feces, urine, and plasma samples were collected separately after ingestion of 25 mg kg−1 atropine by healthy rats. Rat feces and urine samples were cleaned by liquid–liquid extraction and by solid-phase extraction (on C18 cartridges), respectively. Methanol was added to rat plasma samples to precipitate plasma proteins. Atropine was incubated, in vitro, with homogenized liver and with intestinal flora from rats. The metabolites in the incubation solution were extracted with ethyl acetate. These pretreated samples were then analyzed by reversed-phase high-performance liquid chromatography on a C18 column with methanol–ammonium acetate (2 mm, adjusted to pH 3.5 with formic acid), 70:30 (v/v), as mobile phase. Detection was by on-line MS n . Identification and elucidation of the structure of the metabolites were achieved by comparing molecular mass (ΔM), retention-times, and full-scan MS n spectra with those of the parent drug. Ten new metabolites (aponoratropine, apoatropine, hydroxymethoxyatropine, trihydroxyatropine, dimethoxyatropine, dihydroxymethoxyatropine, hydroxydimethoxyatropine, trihydroxymethoxyatropine, dihydroxydimethoxyatropine, and tropic acid) were identified in rat urine after ingestion of atropine. Nine metabolites (nortropine, tropine, aponoratropine, apoatropine, noratropine, hydroxyatropine, hydroxyatropine N-oxide, hydroxymethoxyatropine, and tropic acid) and the parent drug were detected in rat feces. Five metabolites (nortropine, tropine, tropic acid, apoatropine, and hydroxyatropine) and the parent drug were detected in rat plasma. Only two metabolites (apoatropine and noratropine) were detected in the homogenized liver incubation mixture. The hydrolyzed metabolites (tropine and tropic acid) and dehydrated metabolite apoatropine were found in the rat intestinal flora incubation mixture.  相似文献   

14.
A simple and rapid high-performance liquid chromatographic–electrospray ionization (ESI) tandem mass spectrometric method has been developed for elucidation of the structures of the metabolites of arecoline in rat urine after administration of a single dose (20 mg kg?1). The urine samples were purified on a C18 solid-phase extraction cartridge and analysis was then performed on a reversed-phase C18 column with 60:40 (v/v) methanol–0.01% triethylamine solution (2 mmol L?1, adjusted to pH 3.5 with formic acid) as mobile phase and detection by on-line MS–MS. Identification of the metabolites and elucidation of their structures were performed by comparing molecular masses (ΔM), retention-times, and product ion spectra with those of the parent drug. The parent drug arecoline, four phase-I metabolites, and one phase-II metabolite were identified in rat urine.  相似文献   

15.
High-performance differential pulse polarography is used for determining the antitumor antibiotic mitomycin C in human blood plasma and urine. The limit of determination (2-ml samples) is 25 ng ml?1 when the substance is isolated by means of Amberlite XAD-2, and 200 ng mo?1 when samples are not pretreated. The method was applied in a pharmacokinetic experiment; no metabolites of mitomycin C were observed in urine or plasma.  相似文献   

16.
An easy‐to‐handle magnetic dispersive solid‐phase extraction procedure was developed for preconcentration and extraction of cocaine and cocaine metabolites in human urine. Divinyl benzene and vinyl pyrrolidone functionalized silanized Fe3O4 nanoparticles were synthesized and used as adsorbents in this procedure. Scanning electron microscopy, vibrating sample magnetometry, and infrared spectroscopy were employed to characterize the modified adsorbents. A high‐performance liquid chromatography with mass spectrometry method for determination of cocaine and its metabolites in human urine sample has been developed with pretreatment of the samples by magnetic dispersive solid‐phase extraction. The obtained results demonstrated the higher extraction capacity of the prepared nanoparticles with recoveries between 75.1 to 105.7% and correlation coefficients higher than 0.9971. The limits of detection for the cocaine and cocaine metabolites were 0.09–1.10 ng/mL. The proposed magnetic dispersive solid‐phase extraction method provided a rapid, environmentally friendly and magnetic stuff recyclable approach and it was confirmed that the prepared adsorbents material was a kind of highly effective extraction materials for the trace cocaine and cocaine metabolites analyses in human urine.  相似文献   

17.
In order to develop an analytical method for the discrimination of dextromethorphan (an antitussive medicine) from its enantiomer, levomethorphan (a narcotic) in biological samples, chiral analyses of these drugs and their O-demethyl and/or N-demethyl metabolites in rat plasma, urine, and hair were carried out using LC-MS/MS. After the i.p. administration of dextromethorphan or levomethorphan to pigmented hairy male DA rats (5 mg/kg/day, 10 days), the parent compounds and their three metabolites in plasma, urine and hair were determined using LC-MS/MS. Complete chiral separation was achieved in 12 min on a Chiral CD-Ph column in 0.1% formic acid–acetonitrile by a linear gradient program. Most of the metabolites were detected as being the corresponding O-demethyl and N, O-didemethyl metabolites in the rat plasma and urine after the hydrolysis of O-glucuronides, although obvious differences in the amounts of these metabolites were found between the dextro and levo forms. No racemation was observed through O- and/or N-demethylation. In the rat hair samples collected 4 weeks after the first administration, those differences were more clearly detected and the concentrations of the parent compounds, their O-demethyl, N-demethyl, and N, O-didemethyl metabolites were 63.4, 2.7, 25.1, and 0.7 ng/mg for the dextro forms and 24.5, 24.6, 2.6, and 0.5 ng/mg for the levo forms, respectively. In order to fully investigate the differences of their metabolic properties between dextromethorphan and levomethorphan, DA rat and human liver microsomes were studied. The results suggested that there might be an enantioselective metabolism of levomethorphan, especially with regard to the O-demethylation, not only in DA rat but human liver microsomes as well. The proposed chiral analyses might be applied to human samples and could be useful for discriminating dextromethorphan use from levomethorphan use in the field of forensic toxicology, although further studies should be carried out using authentic human samples.  相似文献   

18.
Aromatization of the title compound with selected acidic catalysts has been investigated. It has been established that depending upon the reaction conditions trienone 2,1 -methyltrienone3, dienone 4, diacetoxyketone5 or dione 6 are formed as the major products. Dienone 4 and dione 6 are the main compounds of the reactions of tosyloxyketone 10 with KHSO4 and HBraq, respectively. The reaction of acetoxyketone 8 with HBraq furnishes epimeric 3-bromoketones 12 and 13 in the ratio about 1:1.  相似文献   

19.
Abstract

A sensitive HPLC method with minimal sample preparation and good reproducibility for the determination of furosemide in plasma and urine is described. Acidified plasma samples were extracted using CH2Cl2 containing desmethylnaproxen as internal standard (IS). Fresh urine samples were incubated with β-gluc-uronidase for 15 minutes and then treated with CH3CN containing IS.

Chromatography was performed on a C18 column with 10 mcl sample injection, Mobile phases were: a) for plasma: 0.01 M NaH2PO4, pH 3.5 - CH3OH (65:35), and b) for urine: acetic acid, pH 3.5 - CHS3OH (60:40) at 3 ml/min and fluorescence detection at Ex 235/Em 389 nm. The plasma standard curve was linear from 0.01 to 15.0 mcg/ml and the urine from 0.5 to 200.0 mcg/ml. The within run CV's were 3,2% at 0.74 mcg/ml plasma and 2.0% at 10.7 mcg/ml urine. Recovery from plasma was 69.9% at 2.0 mcg/ml and 98.6% from urine at 5.0 mcg/ml. The stability of furosemide and its glucuronide were studied. Both methods have been applied to the analysis of plasma and urine samples obtained from human volunteers.  相似文献   

20.
A new method, stir bar sorptive extraction (SBSE) with in situ derivatization and thermal desorption (TD)-gas chromatography-mass spectrometry (GC-MS), which is used for the determination of trace amounts of chlorophenols, such as 2,4-dichlorophenol (2,4-DCP), 2,4,6-trichlorophenol (2,4,6-TrCP), 2,3,4,6-tetrachlorophenol (2,3,4,6-TeCP) and pentachlorophenol (PCP), in tap water, river water and human urine samples, is described. The derivatization conditions with acetic acid anhydride and the SBSE conditions such as extraction time are investigated. Then, the stir bar is subjected to TD followed by GC-MS. The detection limits of the chlorophenols in tap water, river water and human urine samples are 1-2, 1-2, and 10-20 pg ml−1 (ppt), respectively. The calibration curves for the chlorophenols are linear and have correlation coefficients higher than 0.99. The average recoveries of the chlorophenols in all the samples are higher than 95% (R.S.D. < 10%) with correction using added surrogate standards, 2,4-dichlorophenol-d5, 2,4,6-trichlorophenol-13C6, 2,3,4,6-tetrachlorophenol-13C6 and pentachlorophenol-13C6. This simple, accurate, sensitive and selective analytical method may be applicable to the determination of trace amounts of chlorophenols in liquid samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号