首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《中国化学快报》2022,33(7):3439-3443
A process for actinide(III) and lanthanum(III) extraction separation from high-level liquid waste (HLLW) was proposed, with N,N,N',N'-tetraoctyl diglycolamide (TODGA) as the extractant, tri-n?butyl phosphate (TBP) as the phase modifier and 2,6-bis[1-(propan-1-ol)-1,2,3-triazol-4-yl]pyridine (PyTri-Diol or PTD) as hydrophilic stripping agent. This ‘hot test’ was successfully carried out, achieving 99.92% removal of americium-241 (241Am) with a separation factor SF(Eu/Am) of 3.8 × 103 in the actinide(III) product solution. The results show that bisamide podand extractants can effectively realize the extraction and separation of actinide(III) and lanthanum(III) from Chinese commercial HLLW and thus have a bright practical application potential for the treatment of commercial HLLW.  相似文献   

2.
For the selective extraction of Am(III) and Eu(III), quadridentate divalent phenolic Schiff bases-bis-salicylaldehyde ethylenediamine (H2salen) was investigated as a kind of extractant. The influences of alkaline cation, inorganic anion, ionic strength, pH and the concentration of H2salen on the distribution ratio of Am(III) and Eu(III) were investigated in detail. As a result, Am(III) and Eu(III) made anionic 1:1 complexes with the ligand (H2salen) and could be extracted into nitrobenzene as ion-pairs with a suitable monovalent counter anion in the aqueous solution, the extracted species were possibly of the type Am(H2salen) Eu(salen)Cl and Eu(H2salen)Cl3, respectively. The extractability of Eu(III) was significantly stronger than that of Am(III) and the maximum separation factor, SF(Am/Eu), was 96 at pH 4.0. The results indicated that H2salen had good selectivity for Am(III) and Eu(III).  相似文献   

3.
To improve understanding of aza-complexants in trivalent actinide?Clanthanide separations, a series of tetradentate N-donor ligands have been synthesized and their complexation of americium(III) and neodymium(III) investigated by UV?Cvisible spectrophotometry in methanolic solutions. The six pyridine/alkyl amine/imine ligands are N,N??-bis(2-methylpyridyl)-1,2-diaminoethane, N,N??-bis(2-methylpyridyl)-1,3-diaminopropane, trans-N,N-bis(2-pyridylmethyl)-1,2-diaminocyclohexane (BPMDAC), N,N??-bis(2-pyridylmethyl)piperazine, N,N??-bis-[pyridin-2-ylmethylene]ethane-1,2-diamine, and trans-N,N-bis-([pyridin-2-ylmethylene]-cyclohexane-1,2-diamine. Each ligand has two pyridine groups and two aliphatic amine/imine N-donor atoms arranged with different degrees of preorganization and structural backbone rigidity. Conditional stability constants for the complexes of Am(III) and Nd(III) by these ligands establish the selectivity patterns. The overall selectivity of Am(III) over Nd(III) is similar to that reported for the terdentate bis(dialkyltriazinyl)pyridine molecules. The cyclohexane amine derivative (BPMDAC) is the strongest complexant and shows the highest selectivity for Am(III) over Nd(III) while the imines appear to prefer a bridging arrangement between two cations. These results suggest that this series of ligands could be employed to develop an enhanced actinide(III)?Clanthanide(III) separation system.  相似文献   

4.
In this study the separation of Am(III) from Eu(III) in nitric acid using two BTP-type N-donor ligands, 2,6-bis(6-ethyl-1,2–diazine-3-yl)pyridine (Et-BDP) and 2,6-bis(4-npropyl-2,3,5,6-tetrazine-1-yl)pyridine (nPr-tetrazine) is presented. The extraction and separation properties of both ligands are tested by two phase liquid-liquid extraction at different acid concentrations. In contrast to nPr-BTP the bisdiazinyl ligand Et-BDP is prone to protonation at nitric acid concentrations of 0.2 M and higher. A separation factor of SFAm/Eu ≈ 5 is obtained using Et-BDP as extracting ligand and with nPr-tetrazine a SFAm/Eu of 9.1 is realized. Hereby 2-bromodecanoic acid as lipophilic anion source is needed.  相似文献   

5.
Extraction of Am(III) and Ln(III) from NaClO4 medium with di(2-ethylhexyl)dithiophosphoric acid (DEHDTP), di(2-ethylhexyl)monothiophosphoric acid (DEHMTP), di(2-ethylhexyl)monothiophosphinic acid (DEHMTPI), dihexyldithiophosphinic acid (DHXDTPI), diheptyldithiophosphinic acid (DHPDTPI), dioctyldithiophosphinic acids (DODTPI), dinonyldithiophosphinic acid (DNDTPI), di(1-methylheptyl)dithiophosphinic acid (DMHDTPI) and di(2-ethylhexyl)dithiophosphinic acid (DEHDTPI) in xylene has been investigated. The order of the extraction selectivity for Am(III) is DEHDTPI > DEHDTP > DEHMTPI > DEHMTP, DHPDTPI > DODTPI > DHXDTPI > DNDTPI, DMHDTPI > DEHDTPI > DODTPI, for extractants with 2-ethylhexyl alkyl, straight chain alkyl, branch chain alkyl, respectively. Using 0.1 mol/l NaClO4 solution as aqueous phase, the slope values of the logD-pH and logD-logC curves are not integers, and the slope values for Am(III) are slightly higher than those for Eu(III), for all extractants. The relationship between the slope value and extraction conditions can be described as: logS = alg(C HA/C M S/4)+b. In the presence of macro Eu(ClO4)3, the formula, logSF Am/Ln = B-2log(C HL-D Ln/(D Ln + 1)C Eu), can well describe the relationship between separation factor and the extraction condition. A high separation factor (SF Am/Eu = 2500) is obtained by solvent extraction with 0.5 mol/1 DEHDTPI in toluene from 1 mol/l NaNO3 solution.  相似文献   

6.
Separation of trivalent lanthanides (Ln(III)) and actinides (An(III)) is a key issue in the advanced spent nuclear fuel reprocessing. In the well-known trivalent actinide lanthanide separation by phosphorus reagent extraction from aqueous komplexes (TALSPEAK) process, the organophosphorus ligand HDEHP (di-(2-ethylhexyl) phosphoric acid) has been used as an efficient reagent for the partitioning of Ln(III) from An(III) with the combination of a holdback reagent in aqueous lactate buffer solution. In this work, the structural and electronic properties of Eu3+ and Am3+ complexes with HDEHP in nitric acid solution have been systematically explored by using scalar-relativistic density functional theory (DFT). It was found that HDEHP can coordinate with M(III) (M=Eu, Am) cations in the form of hydrogen-bonded dimers HL2- (L=DEHP), and the metal ions prefer to coordinate with the phosphoryl oxygen atom of the ligand. For all the extraction complexes, the metal-ligand bonds are mainly ionic in nature. Although Eu(III) complexes have higher interaction energies, the HL2- dimer shows comparable affinity for Eu(III) and Am(III) according to thermodynamic analysis, which may be attributed to the higher stabilities of Eu(III) nonahydrate. It is expected that this work could provide insightful information on the complexation of An(III) and Ln(III) with HDEHP at the molecular level.  相似文献   

7.
The N-donor complexing ligand 2,6-bis(5-(2,2-dimethylpropyl)-1H-pyrazol-3-yl)pyridine (C5-BPP) was synthesized and screened as an extracting agent selective for trivalent actinide cations over lanthanides. C5-BPP extracts Am(III) from up to 1 mol/L HNO(3) with a separation factor over Eu(III) of approximately 100. Due to its good performance as an extracting agent, the complexation of trivalent actinides and lanthanides with C5-BPP was studied. The solid-state compounds [Ln(C5-BPP)(NO(3))(3)(DMF)] (Ln = Sm(III), Eu(III)) were synthesized, fully characterized, and compared to the solution structure of the Am(III) 1:1 complex [Am(C5-BPP)(NO(3))(3)]. The high stability constant of log β(3) = 14.8 ± 0.4 determined for the Cm(III) 1:3 complex is in line with C5-BPP's high distribution ratios for Am(III) observed in extraction experiments.  相似文献   

8.
Summary In the wide pH range of 4 to 10, distribution ratios of Am(III)-humate species to free Am(III) ions (DAmHA = [Am(III)HA]/[Am(III)]free) were determined at 10 ppm (4.7 . 10-5 eq/dm3) of humic acid and 0.1M NaClO4 by a cation-exchange equilibrium method under N2 atmosphere. The DAmHA was insensitive to an increase in pH (logDAmHA ≈ 2.6-2.8), which indicates the formation of mixed hydroxo-humate complexes. The present DAmHA value is larger than the estimated value from available stability constants for ternary complexations by spectroscopic analysis (1.4-2.1) and is markedly smaller than that of Eu(III) obtained by the dialysis method (3.7-8.0) reported in the literatures. The DAmHA obtained in the present study is widely applicable to estimate the actinide(III) and lanthanide(III) sorption on minerals in the presence of humic and fulvic acids.  相似文献   

9.
The imidazolium bis(2-ethylhexyl) phosphate moiety was chemically attached on silica gel by chemical modification. The resulting product ([SG-Im]+ [DEHP]?) was characterized by FT-IR spectroscopy, thermogravimetry and elemental analysis. The sorption behavior of Am(III) and Eu(III) on [SG-Im]+ [DEHP]? was studied from dilute nitric acid medium for the separation of Am(III) and Eu(III) from aqueous waste. The effect of time, concentrations of nitric acid and europium in aqueous phase on the distribution coefficient (K d) was studied. The study indicated the possibility of using modified silica for the separation of Eu(III) from Am(III) with high separation factors (>50 at 0.1 M HNO3).  相似文献   

10.
In order to directly separate trivalent minor actinides(MA:Am,Cm) from fission products(FP) containing rare earths(RE) in high level radioactive liquid waste(HLLW),the authors have challenged to develop a simplified MA separation process by extraction chromatography using a single column.Attention has been paid to a new type of nitrogen-donor ligands,R-BTP(2,6-bis(5,6-dialkyl-1,2,4-triazin-3-yl) pyridine,R:alkyl group) as an extractant because it shows high extraction selectivity for Am(Ⅲ) over RE(Ⅲ).It is known that the R-BTP ligands show different properties such as adsorbability and stability by having different alkyl groups.Therefore,some novel adsorbents were prepared by impregnating different types of R-BTP ligands(isohexyl-,isoheptyl-and cyheptyl-BTP) and a similar ligand to the R-BTP,ATP(2,6-bis(1-aryl-1H-tetrazol-5-yl)pyridines),into the porous silica/polymer support(SiO2-P particles).This work deals with comparison in adsorption and desorption properties of Am and some FP in HNO 3 solution onto such R-BTP type adsorbents,as well as chemical and radiolytic stability of the adsorbents.Then the possibility of a single-column separation of MA from main FP was pursued by evaluating the results of column experiments using the most promising adsorbent(isohexyl-BTP/SiO2-P) under temperature control.In addition,elution behaviors of U and Pd were also estimated.  相似文献   

11.
The binary systems of iron(II) and iron(III) with 2-pyridineformamide thiosemicarbazone (H2Am4DH) and its N(4)-methyl (H2Am4Me), N(4)-ethyl (H2Am4Et) and N(4)-phenyl (H2Am4Ph) derivatives were studied in aqueous solution by pH-potentiometry, ultraviolet–visible spectroscopy and EPR spectra. The formation constants of the iron(II) and iron(III) complexes were calculated from potentiometric and electronic absorption data at 25 °C and ionic strength μ = 0.1 mol·L?1 using the HYPERQUAD program. The values of the formation constant of the FeL species decrease in the order Fe:H2Am4DH > Fe:H2Am4Me ≈ Fe:H2Am4Et > Fe:H2Am4Ph in the same way as the basicity of the ligands. The species distribution diagrams show that the species FeL2 predominates at physiological pH in the Fe:H2Am4DH, Fe:H2Am4Me and Fe:H2Am4Et systems. The similar EPR spectra of these iron(III) binary systems indicate the same coordination spheres around the metallic center and the EPR g values suggests that the unpaired electron is in the dxy orbital, indicating a d xz 2 d yz 2 d xy 1 ground state configuration for the complexes. For the Fe(III):H2Am4Ph system the EPR results indicated dimerization and antiferromagnetic interaction due to the presence of only one thiosemicarbazone ligand around the metallic center.  相似文献   

12.
Different diglycolamide (DGA)-substituted calix[4]arene-based extractants were synthesized and evaluated for the extraction of Am(III) and Eu(III), representative trivalent actinide and lanthanide ions, respectively. On the narrow rim of the calix[4]arene platform, the DGA moiety was either 1,3-di- or tetrasubstituted with a varying spacer length between the oxygen and amide nitrogen atom. In addition, DGA groups were appended both to the wide rim and to both rims of calix[4]arenes and their efficiencies were compared for Am(III) and Eu(III) extraction at three different feed acidities. The extraction and separation efficiencies strongly depended on the N-alkyl substituent as well as the spacer length. 1,3-Di-DGA-substituted calix[4]arenes are inferior extractants to the corresponding tetra-DGA-substituted ones. Narrow rim DGA-functionalized derivatives resulted in high extraction efficiencies, while the wide rim DGA-functionalized calix[4]arenes showed practically no extraction.  相似文献   

13.
Spectroscopy has been used to determine the number of coordinated water molecules bound to Eu(III) and Cm(III) in a series of binary complexes of polyaminocarboxylate and their ternary complexes with dicarboxylates as well as with similar ligands with additional O-, N-, and S-donors. Complexes of Eu(III) and Cm(III) with polyaminocarboxylate alone contain ca. 2.5–3.0 waters of hydration. Increasing the steric requirement of a polyaminocarboxylate by increasing the number of groups in the ligand backbone does not appreciably change the hydration of these cations. The stability constants of the binary and ternary complexes of Cm(III), Am(III), and Eu(III) with these ligands were measured by solvent extraction in a solution of 0.1 M (NaClO4). The size, basicity, specific M3+-second ligand interactions, and steric requirement of the ligands are the factors which affect the ternary complexation. Knowledge of the chemical species formed by actinide cations with organic ligands (carboxylates and aminocarboxylates), which are present in all nuclear waste, is important to understand the behavior of waste forms and the migration behavior of actinides in the environment.  相似文献   

14.
Extraction of U(VI), Eu(III) and Am(III) has been performed from acidic aqueous solutions (HNO3, HClO4) into the ionic liquid [C4mim][Tf2N] in which a new extracting task-specific ionic liquid, based on the CMPO unit {namely 1-[3-[2-(octylphenylphosphoryl)acetamido]propyl]-3-methyl-1H-imidazol-3-ium bis(trifluoromethane)sulfonamide, hereafter noted OctPh-CMPO-IL}, was dissolved at low concentration (0.01 mol·L?1). EXAFS and UV–Vis spectroscopy measurements were performed to characterize the extracted species. The extraction of U(VI) is more efficient than the extraction of trivalent Am and Eu using this TSIL, for both acids and their concentration range. We obtained evidence that the metal ions are extracted as a solvate (UO2(OctPh-CMPO-IL)3) by a cation exchange mechanism. Nitrate or perchlorate ions do not play a direct role in the extraction by being part of the extracted complexes, but the replacement of nitric acid for perchloric acid entails a drop in the selectivity between U and Eu. However, our TSIL allows a sequential separation of U(VI) and Eu/Am(III) using the same HNO3 concentration and same nature of the organic phase, just by changing the ligand concentration.  相似文献   

15.
We report the first examples of hydrophilic 6,6′-bis(1,2,4-triazin-3-yl)-2,2′-bipyridine (BTBP) and 2,9-bis(1,2,4-triazin-3-yl)-1,10-phenanthroline (BTPhen) ligands, and their applications as actinide(iii) selective aqueous complexing agents. The combination of a hydrophobic diamide ligand in the organic phase and a hydrophilic tetrasulfonated bis-triazine ligand in the aqueous phase is able to separate Am(iii) from Eu(iii) by selective Am(iii) complex formation across a range of nitric acid concentrations with very high selectivities, and without the use of buffers. In contrast, disulfonated bis-triazine ligands are unable to separate Am(iii) from Eu(iii) in this system. The greater ability of the tetrasulfonated ligands to retain Am(iii) selectively in the aqueous phase than the corresponding disulfonated ligands appears to be due to the higher aqueous solubilities of the complexes of the tetrasulfonated ligands with Am(iii). The selectivities for Am(iii) complexation observed with hydrophilic tetrasulfonated bis-triazine ligands are in many cases far higher than those found with the polyaminocarboxylate ligands previously used as actinide-selective complexing agents, and are comparable to those found with the parent hydrophobic bis-triazine ligands. Thus we demonstrate a feasible alternative method to separate actinides from lanthanides than the widely studied approach of selective actinide extraction with hydrophobic bis-1,2,4-triazine ligands such as CyMe4-BTBP and CyMe4-BTPhen.  相似文献   

16.
The thermodynamic parameters of complexation of Ce(III), Eu(III), Tm(III) and Am(III) by ClCH2CO2, Cl2CHCO2 and Cl3CCO2 have been measured by potentiometry, solvent extraction and calorimetry in a medium of 2.0 M (NaClO4). The log of the stability constants of any particular cation correlated linearly with the ligand pKa. From comparison of the entropy data it is proposed that the ratio of inner to outer sphere nature of the complexes varies in the order LnClAc2+ > LnCl2Ac2+ > LnCl3Ac2+.  相似文献   

17.
Benzyldimethyldodecylammonium nitrate and benzyltrioctylammonium nitrate were used for the extraction of Am(III) from aqueous nitrate solutions. The dependence of the extraction performance for Am(III) on the concentration of nitric acid, the kind and concentration of salting-out agents in the aqueous phase, and the kind of solvent was investigated. Americium is extracted by the above quarternary salts as a R4NAm(NO3)4 associate. The extraction of Am(III) is compared with the extraction of lanthanides. The high differences in the distribution coefficients for lanthanides and americium can be utilized for the separation of lanthanides and americium.  相似文献   

18.
Extraction complexes of Eu(III) and Am(III) with two 2,6-dicarboxypyridine diamide-type ligands L–A and L–B (Fig. 1) are studied by density functional theory (DFT). At both B3LYP/6-31G(d)/RECP and MP2/6-31G(d)/RECP levels of theory, the geometrical optimizations of the structures of the complexes can achieve the same accuracy and obtain the same geometrical configuration. At the B3LYP/6-311G(d,p)/RECP level of theory Eu3+ and Am3+ prefer to form [ML]3+ complexes under the solvation conditions, and the Am(III) complexes with L–A are more stable than the corresponding Eu(III) complexes. In the system with the ligand L–B, both [ML]3+ and [ML(NO3)3] species are very unstable.  相似文献   

19.
In order to analyze actinide elements in radioactive metal waste, the dissolution and chemical separation conditions were optimized. The surfaces of a type 304 stainless steel plate and of pipe waste sampled from the prototype advanced thermal reactor (Fugen) were dissolved in mixed acid solution (HNO3:HCl:H2O = 1:1:4). The resulting solution was evaporated to dryness and dissolved with 2 mol/dm3 of HNO3 to prepare sample solutions. In order to analyze trivalent actinide elements in the sample solution containing a large amount of Fe(III) (>0.1 g) using TRU resin, the effect of Fe(III) concentration on the recovery of Am(III) and reduction effect of Fe(III) to Fe(II) with ascorbic acid were studied. On the basis of results of this study, chemical separation scheme was constructed and Pu and Am in the sample solutions were separated. Thorium and U in the sample solutions were separated with UTEVA resin. High recoveries for all experimented elements were obtained from the analysis of spiked sample solutions, the effectiveness of the method was confirmed.  相似文献   

20.
The selective transport of yttrium(III) in the presence of iron(III) through a supported liquid membrane (SLM) has been investigated by using di(2-ethylhexyl)phosphoric acid (DEHPA) as a mobile carrier. Yttrium(III) with fast kinetics was preferentially transported from the feed solution of dilute acid into the product solution of 1M H2SO4, while most of iron(III) with slow kinetics remained in the feed solution. The effective separation of yttrium(III) from a large amount of iron(III) was accomplished by the selective transport of yttrium(III) through the SLM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号