首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 561 毫秒
1.
We consider the electric field of an induced dipole moment of a single small particle characterized by the absence of frequency dispersion of the permittivity and the field of a metal particle, which has frequency dispersion and is described in the free electron approximation taking into account the size effects of restriction of the electron free path. The influence of the induced field on the optical properties of a system of small particles is analyzed. It is shown that, for an ensemble of particles without frequency dispersion, the effective medium theory can be used up to concentrations corresponding to filling factors ? ≤ 0.52. In the case of metal particles, with frequency dispersion of dielectric functions and, especially, for the frequency range of the plasmon resonance, this theory can be used only for concentrations not exceeding the threshold ? ≈ 0.01.  相似文献   

2.
Interaction of the spins of 2D electrons with an alternating electric field in the plane of the system is considered. It is assumed that the double spin degeneracy is eliminated by the spin-orbit splitting. It is shown that transitions between different spin states produce a narrow absorption band in the degenerate electron gas. In the frequency domain corresponding to these transitions, those frequencies are combined with two-dimensional plasmons; as a result, the plasmon spectrum is modified, and a new type of oscillations occurs, namely, a spin-plasmon polariton. The dispersion law of these oscillations is derived. The problem of the excitation of spin-plasmon polaritons by an external electromagnetic field is solved.  相似文献   

3.
A resonance transition in a one-dimensional layer of gas contained between transparent parallel plates and optically excited by external radiation has been treated using kinetic theory. A perturbation method has been used to obtain the “first scattering” results for the velocity distribution and number density of excited atoms and the intensity of radiation at any point in the gas. Two special cases are discussed in detail: broad band excitation with inhomogeneous broadening and monochromatic excitation with homogeneous broadening. The effects of particle streaming and wall quenching are shown to produce boundary layer behavior in the excited level density which scales with the particle mean free path. In addition, line reversal of the radiation reemited from the gas is shown to occur and to be a direct result of particle streaming. Numerical and asymptotic results are presented which show these effects. These results should be pertinent to many laboratory and industrial devices in which the particle and photon mean free paths are comparable and to diagnostic techniques which use resonance fluorescence to infer excited level densities.  相似文献   

4.
A self-consistent model is proposed to study nonlinear phenomena, such as secondary resonance and hysteresis in the vertical oscillations of a charged microparticle in a radio-frequency sheath. The motion of a single microparticle in the sheath is simulated by solving Newton's equation in which various forces acting on the particle are taken into account. The particle charging and the sheath electric field are described by a self-consistent model of the collisional radio-frequency sheath dynamics. It is found that the nonlinearity is related to the particle's charge, the sheath electric field, and the external excitation force, as well as the ion drag force and neutral-gas friction on the particle.  相似文献   

5.
A set of second order equations with weak quadratic and cubic non-linearities is considered. Simultaneous parametric and external (forcing) excitations are included. The frequency of the parametric excitation is near a natural frequency of the system, and three cases are analyzed: (i) the external excitation is absent; (ii) the external excitation is present but is not involved in a resonance; and (iii) the external frequency is the same as the parametric frequency. Results are obtained by the method of multiple scales. Frequency-response curves are presented for various combinations of excitation amplitudes, damping coefficients, and phase shift between the excitations. It is found that stable multi-modal responses may exist in the first-order asymptotic solution, even though only one mode is involved in the resonance and no internal resonance condition is present.  相似文献   

6.
The influence of a uniform external magnetic field on the dynamical spin response of cuprate superconductors in the superconducting state is studied based on the kinetic energy driven superconducting mechanism. It is shown that the magnetic scattering around low and intermediate energies is dramatically changed with a modest external magnetic field. With increasing the external magnetic field, although the incommensurate magnetic scattering from both low and high energies is rather robust, the commensurate magnetic resonance scattering peak is broadened. The part of the spin excitation dispersion seems to be an hourglass-like dispersion, which breaks down at the heavily low energy regime. The theory also predicts that the commensurate resonance scattering at zero external magnetic field is induced into the incommensurate resonance scattering by applying an external magnetic field large enough.  相似文献   

7.
We explore the many body physics of a Bose condensed atom gas at finite temperature through the Raman transition between two hyperfine levels. Unlike the Bragg scattering where the phonon-like nature of the collective excitations has been observed, a different branch of thermal atom excitation is found theoretically in the Raman scattering. This excitation is predicted in the generalized random phase approximation (GRPA) and has a gapped and parabolic dispersion relation. The gap energy results from the exchange interaction and is released during the Raman transition. The scattering rate is determined versus the transition frequency ω and the transferred momentum q and shows the corresponding resonance around this gap. Nevertheless, the Raman scattering process is attenuated by the superfluid part of the gas. The macroscopic wave function of the condensate deforms its shape in order to screen locally the external potential displayed by the Raman light beams. This screening is total for a condensed atom transition in order to prevent the condensate from incoherent scattering. The experimental observation of this result would explain some of the reasons why asuperfluid condensate moves coherentlywithout any friction with its surrounding.  相似文献   

8.
A classification of instabilities in spatially restricted systems is presented, which generalizes a classification considered in book [1]. It is shown that, if a system has no active boundaries and the waves are not amplified in an infinite homogeneous medium, which corresponds to the absence of solutions of the dispersion equation with the negative imaginary part of the wave vector at the real frequency, then only nonamplified instabilities with a nonlocal resonance can be developed. The development of nonamplified instability is considered in a spatially restricted system through which a flux propagates, when along with natural waves the excitation of the waves of fluxes playing a key role in the development of the instability is taken into account.  相似文献   

9.
本文研究了外pump电场E_0在离子束-等离子体系统中所激发的静电低频参量不稳定性。导出了这种低频波的一般色散关系,并用数值方法分析了一维质子束-等离子体系统的参量不稳定性的激发过程。结果表明:离子束对等离子体中参量不稳定性的激发有极重要的影响。当没有离子束时,只能激发一种模式的波;一旦将离子束引入等离子体中,就可以在系统中激发两个波长较长的低频波。  相似文献   

10.
巫英坚  谢红 《物理学报》1986,35(4):556-560
以Hg原子为例,讨论了在Hartree-Slater自洽场近似的基础上,采用有限项近似和求解非齐次薛定谔方程相结合的方法,计算了双光子激发截面,该计算程序可以用于计算任意原子的双光子激发截面。 关键词:  相似文献   

11.
The additional force exerted by a gas on an aerosol particle on account of the change in recoil momentum of the gas molecules on the surface of the particle in a resonance radiation field is analyzed. Zh. Tekh. Fiz. 68, 88–89 (March 1998)  相似文献   

12.
The gas behaviour in the presence of monochromator laser radiation is considered. The change of the collision cross-section as a result of the excitation of the colliding particles is taken into account. The total velocity distribution is found as a steady-state Boltzmann equation solution. The appearance of a light-induced heat flux in the gas is predicted and the application of this effect for gas cooling is discussed.  相似文献   

13.
This paper presents a combustion model of a nano-aluminum-air (nAl-air) suspension. The special feature of the model is performing a local mathematical model of the oxidant diffusion through an aluminum oxide layer on the particle surface taking into account the aluminum-oxidant reaction to simulate the combustion of nano-size aluminum (nAl) particles. The oxidation rate of the aluminum particles and the associated with this process the rate of heat release are determined from the solution of the local combustion problems for the entire set of nAl particles in the suspension. To obtain the suspension state parameters we solve the equation system, which includes the energy conservation equations for the gas and particles, the mass-conservation equation for the gas-dispersed mixture and the motion equations for the gas and particles controlling for the particle velocity lag. The model considers gas expansion and thus gas and particle motion. The developed model does not require setting the ignition temperature of nAl particles. The study provides the calculated propagation rate of the combustion front in the nAl-air suspension depending on the nAl mass concentration and on the initial temperature of the suspension.  相似文献   

14.
We study the stationary surface photocurrent in 2D electron gas near the helium surface. Electron gas is assumed to be attracted to the helium surface due to the image attracting force and an external stationary electric field. The alternating electric field has both vertical and in-plane components. The photogalvanic effect originates from the periodic transitions of electrons between quantum subbands in the vertical direction caused by a normal component of the alternating electric field accompanied by synchronous in-plane acceleration/deceleration due to the electric field in-plane component. The effect needs vertical asymmetry of the system. The problem is considered taking into account a friction caused by the electron-ripplon interaction. The photocurrent resonantly depends on the field frequency. The resonance occurs at field frequencies close to the distance between well subbands. The resonance is symmetric or antisymmetric depending on the kind (linear or circular) of polarization.  相似文献   

15.
A quasistationary problem of Lengmuir wave excitation by external sources in uniform plasma is considered. It is established that energy is transferred from external sources to the wave if during its excitation the wave phase velocity changes in addition to an increase in the wave amplitude. A nonlinear dispersion equation for the plasma wave of finite amplitude excited by the external sources is derived. The nonlinear contribution of this dispersion equation is caused not only by an increase in the wave amplitude but also by the wave frequency shift.  相似文献   

16.
We have investigated the optical properties of Λ-configuration ultracold dense Bose gas interacting with two laser pulses, which usually result in electromagnetically induced transparency. With the nonrelativistic quantum electrodynamics and taking into account the atomic dipole-dipole interaction and local field effect, we have derived the Maxwell-Bloch equations of the system. The dispersion relation of an ultracold Bose gas has been obtained and the light-induced nonlinear effects have been analysed. The light-induced nonlinear effects are different from the effects induced by two-body collision of Bose-Einstein condensation atoms which have a frequency shift of transparent window.  相似文献   

17.
时洁  杨德森  时胜国  胡博  张昊阳  胡诗涌 《中国物理 B》2016,25(2):24304-024304
A complete understanding of the bubble dynamics is deemed necessary in order to achieve their full potential applications in industry and medicine. For this purpose it is first needed to expand our knowledge of a single bubble behavior under different possible conditions including the frequency and pressure variations of the sound field. In addition, stimulated scattering of sound on a bubble is a special effect in sound field, and its characteristics are associated with bubble oscillation mode. A bubble in liquid can be considered as a representative example of nonlinear dynamical system theory with its resonance, and its dynamics characteristics can be described by the Keller–Miksis equation. The nonlinear dynamics of an acoustically excited gas bubble in water is investigated by using theoretical and numerical analysis methods. Our results show its strongly nonlinear behavior with respect to the pressure amplitude and excitation frequency as the control parameters, and give an intuitive insight into stimulated sound scattering on a bubble. It is seen that the stimulated sound scattering is different from common dynamical behaviors, such as bifurcation and chaos, which is the result of the nonlinear resonance of a bubble under the excitation of a high amplitude acoustic sound wave essentially. The numerical analysis results show that the threshold of stimulated sound scattering is smaller than those of bifurcation and chaos in the common condition.  相似文献   

18.
Periodic excitation of an oscillator by an external signal close to an exponential one with a complex frequency at the main part of the period is analyzed. The characteristics of a stabilized excitation regime are determined, as are its features when approaching the complex resonance, when the complex frequency of an external signal at the main part of the period is compared with the complex eigenfrequency of the oscillator. A criterion of closeness to the complex resonance is suggested. Estimations of the allowed level of intensity, when nonlinear distortions of the oscillator response are insignificant, are presented.  相似文献   

19.
The paper studies ignition of fine particles, i.e., irreversible growth of particle temperature from an exothermal heterogeneous reaction, with the rate approximated with the Arrhenius law. The particles are suspended in gas with fluctuating temperature, and heat transfer from the particle surface occurs according to the Newtonian law. The equations take into account the temporal structure of gas temperature fluctuations. Modern methods of functional analysis were applied for deriving a closed equation for the probability density function for the particle temperature distribution. The gas temperature fluctuations lessen the threshold for the particle ignition in the hot gas as compared with the deterministic variant. The equations for probability density function produce a closed system of conjugate equations for the average temperature and dispersion of particle temperature fluctuations. The results of simulation illustrate the phenomenon of self-speeding drift of particle temperature towards the temperature of ignition startup.  相似文献   

20.
Effective magnetic properties of a composite meta-material consisting of periodically arranged circular conductive elements are studied theoretically. A general expression for the effective bulk permeability is obtained with mutual effects and lattice ordering being taken into account. The resonance frequency of the permeability is found to be strongly dependent on the size and shape of the unit cell. Frequency dispersion of the permeability is studied with special attention paid to the frequency range, where negative values of the permeability are possible. Corresponding recommendations for optimisation of the meta-materials with negative permeability are made. The results are confirmed by numerical simulations of the finite structure behaviour in an external magnetic field. Received 19 April 2002 Published online 31 July 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号