首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study a class of reflected backward stochastic differential equations with nonpositive jumps and upper barrier. Existence and uniqueness of a minimal solution are proved by a double penalization approach under regularity assumptions on the obstacle. In a suitable regime switching diffusion framework, we show the connection between our class of BSDEs and fully nonlinear variational inequalities. Our BSDE representation provides in particular a Feynman–Kac type formula for PDEs associated to general zero-sum stochastic differential controller-and-stopper games, where control affects both drift and diffusion term, and the diffusion coefficient can be degenerate. Moreover, we state a dual game formula of this BSDE minimal solution involving equivalent change of probability measures, and discount processes. This gives in particular a new representation for zero-sum stochastic differential controller-and-stopper games.  相似文献   

2.
A stochastic partial differential equation in which the square root of the solution appears as the diffusion coefficient is studied as a particular case of stochastic evolution equations. Weak existence of a solution is proved by the Euler approximation scheme. The super-Brownian motion on [0, 1] is also studied as a Hilbert-space-valued equation. In this set up, weak existence, pathwise uniqueness, and positivity of solutions are obtained in any dimension d . Accepted 23 October 1998  相似文献   

3.
The purpose of this paper is to establish Bogoliubov averaging principle of stochastic reaction–diffusion equation with a stochastic process and a small parameter. The solutions to stochastic reaction–diffusion equation can be approximated by solutions to averaged stochastic reaction–diffusion equation in the sense of convergence in probability and in distribution. Namely, we establish a weak law of large numbers for the solution of stochastic reaction–diffusion equation.  相似文献   

4.
Real life reaction–diffusion problems are characterized by their inherent or externally induced uncertainties in the design parameters. This paper presents a finite element solution of reaction–diffusion equations of Wick type. Using the Wick-product properties and the Wiener–Itô chaos expansion, the stochastic variational problem is reformulated to a set of deterministic variational problems. To obtain the chaos coefficients in the corresponding deterministic reaction–diffusion, we implement the usual Galerkin finite element method using standard techniques. Once this representation is computed, the statistics of the numerical solution can be easily evaluated. Computational results are shown for one- and two-dimensional test examples.  相似文献   

5.
Summary We consider a one-dimensional linear wave equation with a small mean zero dissipative field and with the boundary condition imposed by the so-called Goursat problem. In order to observe the effect of the randomness on the solution we perform a space-time rescaling and we rewrite the problem in a diffusion approximation form for two parameter processes. We prove that the solution converges in distribution toward the solution of a two-parameter stochastic differential equation which we identify. The diffusion approximation results for oneparameter processes are well known and well understood. In fact, the solution of the one-parameter analog of the problem we consider here is immediate. Unfortunately, the situation is much more complicated for two-parameter processes and we believe that our result is the first one of its kind.Partially supported by ONR N00014-91-J-1010  相似文献   

6.
Summary Consider a stochastic differential equation on d with smooth and bounded coefficients. We apply the techniques of the quasi-sure analysis to show that this equation can be solved pathwise out of a slim set. Furthermore, we can restrict the equation to the level sets of a nondegenerate and smooth random variable, and this provides a method to construct the solution to an anticipating stochastic differential equation with smooth and nondegenerate initial condition.  相似文献   

7.
Summary Motivated by Tsirel'son's equation in continuous time, a similar stochastic equation indexed by discrete negative time is discussed in full generality, in terms of the law of a discrete time noise. When uniqueness in law holds, the unique solution (in law) is not strong; moreover, when there exists a strong solution, there are several strong solution. In general, for any time,n, the -field generated by the past of a solution up to timen is shown to be equal, up to negligible sets, to the -field generated by the 3 following components: the infinitely remote past of the solution, the past to the noise up to timen, together with an adequate independent complement.  相似文献   

8.
We show the existence of unique global strong solutions of a class of stochastic differential equations on the cone of symmetric positive definite matrices. Our result includes affine diffusion processes and therefore extends considerably the known statements concerning Wishart processes, which have recently been extensively employed in financial mathematics.Moreover, we consider stochastic differential equations where the diffusion coefficient is given by the αth positive semidefinite power of the process itself with 0.5<α<1 and obtain existence conditions for them. In the case of a diffusion coefficient which is linear in the process we likewise get a positive definite analogue of the univariate GARCH diffusions.  相似文献   

9.
Stochastic calculus and stochastic differential equations for Brownian motion were introduced by K. Itô in order to give a pathwise construction of diffusion processes. This calculus has deep connections with objects such as the Fock space and the Heisenberg canonical commutation relations, which have a central role in quantum physics. We review these connections, and give a brief introduction to the noncommutative extension of Itô’s stochastic integration due to Hudson and Parthasarathy. Then we apply this scheme to show how finite Markov chains can be constructed by solving stochastic differential equations, similar to diffusion equations, on the Fock space.  相似文献   

10.
The paper is concerned with the existence and uniqueness of a strong solution to a two-dimensional backward stochastic Navier-Stokes equation with nonlinear forcing, driven by a Brownian motion. We use the spectral approximation and the truncation and variational techniques. The methodology features an interactive analysis on the basis of the regularity of the deterministic Navier-Stokes dynamics and the stochastic properties of the Itô-type diffusion processes.  相似文献   

11.
In a Hilbert space H we consider a process X solution of a semilinear stochastic differential equation, driven by a Wiener process. We prove that, under appropriate conditions, the transition probabilities of X are absolutely continuous with respect to a properly chosen gaussian measure μ in H, and the corresponding densities belong to some Wiener-Sobolev spaces over (H,μ). In the linear caseX is a nonsymmetric Ornstein-Uhlenbeck process, with possibly degenerate diffusion coefficient. The general case is treated by the Girsanov. Theorem and the Malliavin calculus. Examples and applications to stochastic partial differential equations are given  相似文献   

12.
In this paper, we consider the linear stochastic heat equation with additive noise in dimension one. Then, using the representation of its solution X as a stochastic convolution of the cylindrical Brownian motion with respect to an operator-valued kernel, we derive Itô's- and Tanaka's-type formulae associated to X.  相似文献   

13.
This paper proves the large deviation principle for a class of non-degenerate small noise diffusions with discontinuous drift and with state-dependent diffusion matrix. The proof is based on a variational representation for functionals of strong solutions of stochastic differential equations and on weak convergence methods. Received: 26 May 1998 / Revised version: 24 February 1999  相似文献   

14.
In this paper, we are concerned with the numerical approximation of stochastic differential equations with discontinuous/nondifferentiable drifts. We show that under one-sided Lipschitz and general growth conditions on the drift and global Lipschitz condition on the diffusion, a variant of the implicit Euler method known as the split-step backward Euler (SSBE) method converges with strong order of one half to the true solution. Our analysis relies on the framework developed in [D. J. Higham, X. Mao and A. M. Stuart, Strong convergence of Euler-type methods for nonlinear stochastic differential equations, SIAM Journal on Numerical Analysis, 40 (2002) 1041-1063] and exploits the relationship which exists between explicit and implicit Euler methods to establish the convergence rate results.  相似文献   

15.
This paper is devoted to forward-backward systems of stochastic differential equations in which the forward equation is not coupled to the backward one, both equations are infinite dimensional and on the time interval [0, + ∞). The forward equation defines an Ornstein-Uhlenbeck process, the driver of the backward equation has a linear part which is the generator of a strongly continuous, dissipative, compact semigroup, and a nonlinear part which is assumed to be continuous with linear growth. Under the assumption of equivalence of the laws of the solution to the forward equation, we prove the existence of a solution to the backward equation. We apply our results to a stochastic game problem with infinitely many players.  相似文献   

16.
The aim of this paper is to generalize two important results known for the Stratonovich and Itô integrals to any stochastic integral obtained as limit of Riemann sums with arbitrary evaluating point: the ordinary chain rule for certain nonlinear functions of the Brownian motion and the Wong–Zakai approximation theorem. To this scope we begin by introducing a new family of products for smooth random variables which reduces for specific choices of a parameter to the pointwise and to the Wick products. We show that each product in that family is related in a natural way to a precise choice of the evaluating point in the above mentioned Riemann sums and hence to a certain notion of stochastic integral. Our chain rule relies on a new probabilistic representation for the solution of the heat equation while the Wong–Zakai type theorem follows from a reduction method for quasi-linear SDEs together with a formula of Gjessing’s type.  相似文献   

17.
Summary We give a program for solving stochastic boundary value problems involving functionals of (multiparameter) white noise. As an example we solve the stochastic Schrödinger equation {ie391-1} whereV is a positive, noisy potential. We represent the potentialV by a white noise functional and interpret the product of the two distribution valued processesV andu as a Wick productV u. Such an interpretation is in accordance with the usual interpretation of a white noise product in ordinary stochastic differential equations. The solutionu will not be a generalized white noise functional but can be represented as anL 1 functional process.  相似文献   

18.
In this paper, we will present a new adaptive time stepping algorithm for strong approximation of stochastic ordinary differential equations. We will employ two different error estimation criteria for drift and diffusion terms of the equation, both of them based on forward and backward moves along the same time step. We will use step size selection mechanisms suitable for each of the two main regimes in the solution behavior, which correspond to domination of the drift-based local error estimator or diffusion-based one. Numerical experiments will show the effectiveness of this approach in the pathwise approximation of several standard test problems.  相似文献   

19.
In this paper, we prove the existence and uniqueness of the solution for a class of backward stochastic partial differential equations (BSPDEs, for short) driven by the Teugels martingales associated with a Lévy process satisfying some moment conditions and by an independent Brownian motion. An example is given to illustrate the theory.  相似文献   

20.
We prove a general theorem that the -valued solution of an infinite horizon backward doubly stochastic differential equation, if exists, gives the stationary solution of the corresponding stochastic partial differential equation. We prove the existence and uniqueness of the -valued solutions for backward doubly stochastic differential equations on finite and infinite horizon with linear growth without assuming Lipschitz conditions, but under the monotonicity condition. Therefore the solution of finite horizon problem gives the solution of the initial value problem of the corresponding stochastic partial differential equations, and the solution of the infinite horizon problem gives the stationary solution of the SPDEs according to our general result.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号