首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
(LaO)_3BO_3基质中Tb~(3+)的发光特性   总被引:1,自引:0,他引:1  
在 2 54nm紫外光 (UV)激发下 ,研究了 (La O) 3 BO3 基质中 Tb3 + 的激发光谱、发射光谱、发光寿命与Tb3 +浓度的关系 ,并探讨了 Tb3 +的 5D3 → 7F4 跃迁发射的自身浓度猝灭机理。在阴极射线 (CR)激发下 ,研究了 (L a O) 3 BO3 :Tb3 + 的发光强度与 Tb3 + 浓度、加速电压及电流密度的关系。发现在 UV或 CR两种激发条件下 ,试样均能发出明亮的绿色荧光 ,有望成为一种有发展前途的绿粉  相似文献   

2.
Ca3La(BO3)3:Tb3+的合成与发光性质   总被引:2,自引:0,他引:2       下载免费PDF全文
高温固相反应法合成了Ca3La(BO3)3:Tb3+光致发光材料。利用扫描电镜和激光衍射分析仪测定了样品的晶粒形貌及粒径大小分布,利用荧光分光光度计研究了Ca3La(BO3)3:Tb3+的光致发光特性。确定了在Ca3La(BO3)3基质中Tb3+离子浓度对其发光强度的影响及其自身浓度猝灭机理;探讨了助熔剂Li2CO3、敏化剂Ce3+离子的加入对荧光粉发光强度的影响。  相似文献   

3.
采用高温固相反应合成了 (La1-xEux) (BO2 ) 3 ,利用X射线粉末衍射方法确定其晶体结构 ,利用红外光谱探讨了 [BO3 ]单元的聚合情况。根据 (La1-xEux) (BO2 ) 3 所属空间群中等效点系的对称性分析及Eu3 + 的荧光光谱 ,详细地探讨了Eu3 + 的发光性质与其所处格位点对称性的关系。La(BO2 ) 3 ∶Eu3 + 体系中 ,Eu3 + 出现较强的5D0 →7F1磁偶极跃迁 ,因而Eu3 + 主要占据点对称性为Ci 的格位 ,出现的其它跃迁是部分Eu3 + 占据偏离Ci 的格位 ,而并非占据C2 或C1格位 ,另外 ,5D0 →7F4 跃迁发射很强 ,其原因尚不清楚。选择适当的助熔剂可以提高样品的结晶程度 ,有利于Eu3 + 占据严格的Ci 格位 ,增强材料的发光性能。  相似文献   

4.
用高温固相法合成了红色荧光粉Ca4(La1-x-yGdxYy)1-nO(BO3)3∶nEu3+(LnCOB∶Eu,Ln=La1-x-y-GdxYy),并对其在真空紫外至可见范围的发光性质进行了系统的研究,找出发光较好的组分范围并与某些商品红色荧光粉进行了比较。LnCOB∶Eu在254 nm紫外线激发下的发射光谱为Eu3+的5D0→7FJ(J=0,1,2,3,4)的特征跃迁。监测其最强的5D0→7F2发射线,其激发光谱在250 nm左右有一个宽的激发带,归属于Eu-O电荷迁移带,适于用254 nm汞线激发;在300~450 nm有一些弱的归属于Eu3+的f-f跃迁的锐吸收峰;在真空紫外区184~188 nm附近有一个宽带,为基质吸收带,并可能包含了Eu3+的f-d跃迁。在Ca4GdO-(BO3)3∶Eu3+的激发光谱中,还包含了Gd3+的8S7/2→6GJ跃迁,此跃迁增强了荧光粉在184~188 nm附近的激发强度。  相似文献   

5.
采用传统的高温固相反应法合成出(Y,Gd)BO3∶Tb荧光体,对所制得的荧光体进行了晶体结构分析,分析结果表明结晶良好。(Y,Gd)BO3∶Tb在147 nm真空紫外光激发下的发射主峰在544 nm(Tb3+的5D4→7F5跃迁),是一种绿色发光材料。样品的真空紫外激发光谱及紫外激发光谱表明,(Y,Gd)BO3∶Tb的基质吸收带位于150 nm附近。Gd3+离子对真空紫外区的光吸收有增强作用,存在着Gd3+→Tb3+的能量传递。测量了荧光粉在室温下的荧光衰减特性,其余辉时间约为8 m s,能够满足显示显像技术的要求。因此,(Y,Gd)-BO3∶Tb是一种有前景的PDP用绿色发光材料。  相似文献   

6.
张佳  陈贵宾 《发光学报》2014,(12):1432-1436
采用固相法合成了KSr4(BO3)3∶x Eu2+(KSB∶x Eu2+)荧光粉,通过X射线粉末衍射(XRD)、扫描电镜(SEM)及光致发光光谱分别研究了样品的晶相、形貌及发光性质。XRD研究结果表明制备的样品为正交晶系的KSr4(BO3)3单相。当Eu2+的掺杂摩尔分数x为1.5%时,在激发光谱250~550 nm范围内观察到了两个宽带激发,可归属为Eu2+的4f7-4f65d1跃迁;在400 nm激发下,发射谱呈现出一个不对称的黄色发射带,峰值位于560 nm处,可归属于Eu2+的4f65d1-4f7跃迁。因在KSr4(BO3)3化合物中存在3个Sr格位,根据其光谱特征可推测发射谱中非对称的发射带来源于多个Eu2+发光中心。  相似文献   

7.
以高温固相法合成了Ba3La(BO3)3∶Tb3 发光材料。在254nm紫外光激发下,研究了Ba3La(BO3)3∶Tb3 的激发光谱、发射光谱、发光强度与Tb3 浓度的关系。确定了Ba3La(BO3)3基质中Tb3 的自身浓度猝灭机理;探讨了助熔剂LiCO、敏化剂Ce3 、Bi3 的加入对荧光粉的发光强度的影响。  相似文献   

8.
采用高温固相法合成了适合紫外-近紫外激发的BaLa2-xZnO5∶xTb3+绿色荧光粉,并对样品的晶格结构和发光性质进行了研究。结果表明:BaLn2ZnO5属于四方晶系,具有空间群I4/mcm,基本结构由LaO8、BaO10和ZnO4多面体组成。样品的激发光谱为4f75d1宽带吸收,激发峰位于241 nm和279 nm。用279 nm紫外光源激发样品,发射峰位于548 nm。在Tb3+掺杂量为x=0.3时发光强度最大。掺杂量x0.03时发生浓度猝灭现象。根据能量共振理论,BaLa2-xZnO5∶xTb3+荧光粉的浓度猝灭机理是电偶极-电偶极相互作用。  相似文献   

9.
采用高温固相法成功制备了一系列新型NaY_(1-x)(MoO_4)_2∶xEu~(3+)荧光粉。通过X射线衍射仪(XRD)、扫描电镜(SEM)和荧光光谱仪对其晶型结构、微观形貌以及发光性能进行了表征。结果表明,所得样品呈白钨矿结构,空间点群结构为I41/a,属于四方晶系结构,颗粒尺寸在75~260 nm之间。在466 nm激发下,样品发射出波长为615 nm的红光。通过对样品的荧光寿命、发光机理和红橙光分支比(R/O)分析发现,Eu3+的浓度对样品荧光寿命影响不大,寿命为0.38~0.39 ms;而随着Eu3+掺杂浓度增加,R/O值逐渐减小,样品对称性增加。同时研究了Eu3+掺杂浓度及温度对NaY_(1-x)(MoO_4)_2∶xEu~(3+)材料发光强度的影响,结果表明NaY_(1-x)-(MoO_4)_2∶xEu~(3+)的浓度猝灭现象不明显,但却发生明显的温度猝灭现象。由此可见,NaY_(1-x)(MoO_4)_2∶xEu~(3+)在发光二极管(LED)用高效红色荧光粉领域具有潜在的应用价值。  相似文献   

10.
Na3La2(BO3)3:Sm3+的合成及其光谱特性   总被引:18,自引:0,他引:18       下载免费PDF全文
本文采用固相反应法,合成了一系列掺Sm^3 的Na3La2(BO3)2[Na3(La1-xSmx)2(BO3)3]发光,X-射线粉末衍射数据分析表明它们属于正交晶系,空间群为Amm2,测量了红外光谱,荧光光谱,观察到在599nm,645nm处有较强的荧光发射,并研究了发光强度与Sm^3 离子浓度(x)的关系,确定了Sm^3 离子在Na3La2(BO3)3基质中发光的适宜浓度。  相似文献   

11.
一种新型的白光LED用绿色荧光粉Ca_8MgLu(PO_4)_7∶Tb~(3+)   总被引:1,自引:1,他引:1  
采用高温固相法合成一种单一纯相绿色荧光粉Ca8Mg Lu(PO4)7∶Tb3+,通过X射线衍射(XRD)、荧光光谱(PLE,PL)和荧光寿命曲线研究了Ca8Mg Lu(PO4)7∶Tb3+的发光性能。Ca8Mg Lu(PO4)7∶Tb3+能被378nm的近紫外光激发,Tb3+发生5D4-7F5跃迁发出绿光,色坐标为(0.324,0.592)。Ca8Mg Lu(PO4)7∶Tb3+的量子效率可达84%,热猝灭性能良好:在150℃和200℃的发光强度积分分别是25℃的90.71%和86.36%。研究结果表明Ca8Mg Lu(PO4)7∶Tb3+是一种理想的适于NUV-LED芯片激发的白光LED用绿色荧光粉。  相似文献   

12.
采用高温固相法合成了适用于UVLED芯片激发的NaCaPO4∶Tb3 绿色荧光粉并对其发光性质进行了研究。该荧光粉的发射峰位于418,440,492,545,586,622nm,分别对应Tb3 的5D3→7F5、5D3→7F4、5D4→7F6、5D4→7F5、5D4→7F4、5D4→7F3能级跃迁。其中位于492,545nm的发射峰最强,样品发射很好的绿光。主要激发峰位于380~400nm之间,属于4f→4f电子跃迁吸收,与UVLED芯片的发射相匹配。考察了Tb3 掺杂浓度和Li ,Na 和K 作为电荷补偿剂对样品发光性能的影响:Tb3 的最佳掺杂浓度为10%,以Li 的补偿效果最好。NaCaPO4∶Tb3 是一种适用于白光LED的绿色荧光材料。  相似文献   

13.
采用高温固相法合成了Ca3Y2-2x(Si3O9)2∶2xSm3+系列荧光粉,并表征了材料的发光特性.X射线衍射图谱表明:得到的样品为纯相Ca3Y2(Si3O9)2晶体;样品的激发光谱主要来源于Sm3+的特征激发;分别采用紫外、近紫外和蓝光作为激发源,样品均发射橙红光.在402nm近紫外光激发下,Ca3Y2(Si3O9)2∶Sm3+发射光谱主要由3个峰组成,发射峰值分别位于565nm、604nm和651nm,归属于Sm3+的4G5/2→6HJ/2(J=5,7,9)跃迁,其中发射主峰位于604nm处.通过时间分辨光谱测得Sm3+的4G5/2能级的荧光寿命.随着Sm3+摩尔浓度的增加,样品发光强度先增强后减弱,当x=0.02时发光强度达到最大,浓度猝灭机理为电偶极-电偶极相互作用.  相似文献   

14.
通过水热法合成出Ce3+和Tb3+共激活的LaPO4纳米线,并同相应的微米棒进行了比较。研究了其荧光光谱和动力学过程。结果表明纳米线和微米棒的晶体结构均为单斜相。在单掺杂Ce3+和Tb3+的材料中,微米棒的发光强度与纳米线相比稍有提高,但在共掺杂的纳米线样品中对应Ce3+的激发,Tb3+的5D4→7F5绿光发射比微米棒提高了3~5倍。通过动力学研究,纳米线中Ce3+和Tb3+的电子跃迁速率与微米棒对比没有显著的提高,且Ce3+→Tb3+的能量传递速率降低了3倍。Tb3+的5D3能级衰减包括两个过程:快过程和慢过程。纳米线以慢过程为主,而微米棒以快过程为主。我们认为慢过程对应5D3→5D4的弛豫,快过程对应5D3向其他缺陷能级的跃迁。因此共掺杂纳米线中强度的提高被归因于在纳米线中更多的边界阻碍而引起在高于5D4的激发态能级上损失的能量更少。  相似文献   

15.
采用高温固相法合成了绿色荧光粉CaBa2(BO3)2 ∶ Tb3+ 并对其发光特性进行了研究。发射峰值位于496, 549, 588, 622 nm,分别对应Tb3+5D47F65D47F55D47F45D47F3 能级跃迁。其中以496 nm和549 nm的发射峰最强,样品呈现很好的绿色发光。 主要激发峰位于200~300 nm之间,属于4f75d1宽带吸收。考察了Tb3+掺杂 浓度和Li+ , Na+ 和 K+ 作为电荷补偿剂对样品发光性能的影响,几乎不发生浓度猝灭现象,Li+的补偿效果最好。还确定了原料CaCO3、BaCO3、H3BO3的最佳配比,当H3BO3过量3%时,合成的晶体发光亮度最好。  相似文献   

16.
采用高温固相法,以CaCO3 (A.R)、BaCO3 (A.R)、H3BO3 (A.R)和Eu2O3 (99.99%)为原料制备了Ba2Ca(BO3)2∶Eu2+绿色发光材料,测量了材料的晶体结构、发光特性及色坐标等。Ba2Ca(BO3)2∶Eu2+材料的激发光谱覆盖200~500 nm的紫外-可见光区。在400 nm近紫外光激发下,材料的发射光谱为一主峰位于537 nm的非对称宽谱,对应于Eu2+的4f65d1→4f7特征跃迁。研究发现,随Eu2+掺杂浓度的增大,Ba2Ca-(BO3)2∶Eu2+材料的发射强度呈现先增大、后减小的变化趋势,最大发射强度对应的Eu2+掺杂摩尔分数为2%。造成发射强度下降的原因为浓度猝灭,其机理为电偶极-电偶极相互作用。依据晶格常数及实验光谱数据,得出临界距离Rc分别为2.64 nm和2.11 nm。随Eu2+掺杂浓度的增大,Ba2Ca(BO3)2∶Eu2+材料的色坐标变化微小。计算得到Ba2Ca(BO3)2∶2%Eu2+的转换效率约为72%。  相似文献   

17.
采用传统高温固相法制备了GdNbO_4∶10%Yb~(3+),x%Er~(3+)荧光粉。利用XRD对样品的晶体结构进行了分析,结果表明所得的样品为纯相。在980nm光纤激光器激发下,测量了样品的上转换发射光谱,实验发现样品发生了浓度猝灭。利用荧光强度比(FIR)方法研究了GdNbO_4∶Yb~(3+)/Er~(3+)荧光粉的温度传感特性,结果表明灵敏度随温度的升高先增大后减小。建立了Er~(3+)的两个绿色发射能级的温度猝灭物理模型并用其成功解释了样品的绿色上转换发光温度猝灭现象。  相似文献   

18.
用固相法合成了La3PO7∶Eu3 ,用X射线衍射仪测定了其晶体结构,室温下用Hitachi F-4500测定了其光致发光性质。结果表明合成的La3PO7∶Eu3 属单斜相结构,Eu3 在单斜结构的La3PO7基质中占据非对称性格位。在254 nm光激发下,La3PO7∶Eu3 发射出较强的红光,表明Eu3 的5D0→7F2跃迁强度远大于5D0→7F1的跃迁强度,其色坐标和Y2O3∶Eu3 的色坐标位置相近。另外,还研究了Eu3 在体相La3PO7材料中的猝灭浓度,发现当掺杂Eu3 浓度增大到7.6 mol%时,出现浓度猝灭。  相似文献   

19.
高分子网络凝胶法低温合成YAG∶Tb3+荧光粉   总被引:1,自引:1,他引:0  
以金属硝酸盐为原料,丙烯酰胺为聚合单体以及N,N-亚甲基双丙烯桥酰胺为胶联剂,采用高分子网络凝胶法在低温下合成精细粒度Y3Al5O12∶Tb3 (YAG∶Tb3 )荧光粉.分别用热重-差热分析(TG-DTA)、X射线衍射(XRD)、扫描电子显微镜(SEM),以及激发和发射光谱测量对样品进行了表征,考察了烧结温度对样品结晶程度、颗粒大小的影响,以及样品发光性能与烧结温度和Tb3 浓度的关系.结果表明:YAG晶相形成温度为850℃;粉体颗粒大小均匀,随着烧结温度的升高,颗粒粒径增大,结晶程度提高;观察到Tb3 中4f-5d的吸收带以及5D4-7Fj(j=6,5,4,3)的特征发射带,最强吸收与最强发射分别发生在272,541.8 nm,与量子理论(E=1.24/λ)的计算结果相吻合,其发光强度随烧结温度的升高而增强;观察到了Tb3 在Y3Al5O12中的浓度猝灭现象.  相似文献   

20.
采用高温固相反应法合成了Tb3+激活的Sr2Mg(BO3)2荧光粉.利用XRD表征荧光粉的相纯度.研究了材料在VUV-UV范围的激发光谱和在VUV-UV光激发下的发射光谱及荧光衰减曲线.结果显示:Sr2Mg(BO3)2:Tb3+荧光粉的基质吸收带主峰位置大约位于178nm,Tb3+的最低自旋允许和最低自旋禁阻f-d跃迁吸收带分别位于235和278 nm,172nm激发下荧光粉的最强发射光谱主峰在543 nm,色坐标为(0.30,0.45),Tb3+的荧光寿命值约为2.8 ms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号