首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nuclear resonance scattering is an atomistic spectroscopy sensitive to magnetic and electronic properties as well as slow and fast structural dynamics. Applications, which take advantage of both the outstanding properties of third generation synchrotron radiation sources and those of the Mössbauer effect, benefit most. Examples resulting from investigations at the ESRF will be given in applications to high pressure and low temperatures, nano-scale materials, and dynamics of disordered systems. To cite this article: R. Rüffer, C. R. Physique 9 (2008).  相似文献   

2.
Resonant inelastic X-ray scattering (also known as resonant X-ray Raman spectroscopy when only valence and conduction states are involved in the final state excitation) has developed into a major tool for understanding the electronic properties of complex materials. Presently it provides access to electron excitations in the few hundred meV range with element and bulk selectivity. Recent progress in X-ray optics and synchrotron radiation engineering have opened up new perspectives for this powerful technique to improve resolving power and efficiency. We briefly present the basics of the method and illustrate its potential with examples chosen from the literature. To cite this article: J. Lüning, C.F. Hague, C. R. Physique 9 (2008).  相似文献   

3.
Resonant X-ray scattering is a method which combines high- resolution X-ray elastic diffraction and atomic core-hole spectroscopy for investigating electronic and magnetic long-range ordered structures in condensed matter. During recent years the development of theoretical models to describe resonant X-ray scattering amplitudes and the evolution of experimental techniques, which include the control and analysis of linear photon polarization and the introduction of extreme environment conditions such as low temperatures, high magnetic field and high pressures, have opened a new field of investigation in the domain of strongly correlated electron systems. To cite this article: L. Paolasini, F. de Bergevin, C. R. Physique 9 (2008).  相似文献   

4.
A review of X-ray intensity fluctuation spectroscopy   总被引:1,自引:0,他引:1  
This article reviews the literature on X-ray fluctuation intensity spectroscopy or, as it is often called, X-ray photon correlation spectroscopy. It highlights measurements using different types of diffuse scattering. To cite this article: M. Sutton, C. R. Physique 9 (2008).  相似文献   

5.
We study quasistatic cloaking by the mechanism of plasmonic resonance, for systems of coated cylinders. Our focus is on the nature of the resonant cloaking interaction: whether systems of particles can be made to cooperate in cloaking a polarizable particle from an applied uniform field. We show that in fact if the cloaking regions of the systems of particles overlap, then they tend to interact in a fashion detrimental to their cloaking of the polarizable particle. If the cloaking regions touch but do not overlap, then the system of particles can cloak a larger region than each would in isolation. To cite this article: R.C. McPhedran et al., C. R. Physique 10 (2009).  相似文献   

6.
Optical Activity (OA) was only measured quite recently in the X-ray range using electric dipole–electric quadrupole interference terms that mix multipoles of opposite parity but are only present in systems with broken inversion symmetry. Natural OA refers to effects that are even with respect to time-reversal symmetry, whereas non-reciprocal OA is concerned with time-reversal odd contributions. Various types of X-ray dichroism related to either natural or non-reciprocal OA have been detected and are reviewed in the present paper. To cite this article: A. Rogalev et al., C. R. Physique 9 (2008).  相似文献   

7.
Soft X-ray resonant magnetic scattering offers a unique element-, site- and valence-specific probe to study magnetic structures on the nanoscopic length scale. This new technique, which combines X-ray scattering with X-ray magnetic circular and linear dichroism, is ideally suited to investigate magnetic superlattices and magnetic domain structures. The theoretical analysis of the polarization dependence to determine the vector magnetization profile is presented. This is illustrated with examples studying the closure domains in self-organising magnetic domain structures, the magnetic order in patterned samples, and the local configuration of magnetic nano-objects using coherent X-rays. To cite this article: G. van der Laan, C. R. Physique 9 (2008).  相似文献   

8.
Ben Wood   《Comptes Rendus Physique》2009,10(5):379-390
Metamaterials have significantly extended the range of electromagnetic properties available to device designers. An interesting application of these new materials is to the problem of cloaking, where the goal is to render an object invisible to electromagnetic radiation within a certain frequency range. Here, I review the concepts behind recently-proposed invisibility cloaks, and the way in which metamaterials can allow these designs to be realized. To cite this article: B. Wood, C. R. Physique 10 (2009).  相似文献   

9.
The proposed European X-ray Free-Electron Laser source (XFEL) will provide extremely brilliant (B>1033 ph/s/mm2/mrad2/0.1% bw) and highly coherent X-ray beams. Due to the pulse structure and the unprecedented brightness one will be able for the first time to study fast dynamics in the time domain, thus giving direct access to the dynamic response function S(Q,t), instead of S(Q,ω), which is of central importance for a variety of phenomena such as fast non-equilibrium dynamics. X-ray Photon Correlation Spectroscopy (XPCS) measures the temporal changes in a speckle pattern produced when coherent light is scattered by a disordered system and therefore allows the measurement of S(Q,t). This article summarizes important aspects of the scientific case for an XPCS instrument at the planned XFEL. New XPCS setups taking account of the XFEL pulse structure are described. To cite this article: G. Grübel, C. R. Physique 9 (2008).  相似文献   

10.
Time-dependent fields are a valuable tool to control fundamental quantum phenomena in highly coherent low dimensional electron systems. Carbon nanotubes and graphene are a promising ground for these studies. Here we offer a brief overview of driven electronic transport in carbon-based materials with the main focus on carbon nanotubes. Recent results predicting control of the current and noise in nanotube based Fabry–Pérot devices are highlighted. To cite this article: L.E.F. Foa Torres, G. Cuniberti, C. R. Physique 10 (2009).  相似文献   

11.
The physical modelling of materials' behaviour under severe conditions is an indispensable element for developing future fission and fusion systems: screening, design, optimisation, processing, licensing, and lifetime assessment of a new generation of structure materials and fuels, which will withstand high fast neutron flux at high in-service temperatures with the production of elements like helium and hydrogen.JANNUS and other analytical experimental tools are developed for this objective. However, a purely analytical approach is not sufficient: there is a need for flexible experiments integrating higher scales and coupled phenomena and offering high quality measurements; these experiments are performed in material testing reactors (MTR). Moreover, complementary representative experiments are usually performed in prototypes or dedicated facilities such as IFMIF for fusion. Only such a consistent set of tools operating on a wide range of scales, can provide an actual prediction capability. A program such as the development of silicon carbide composites (600–1200 °C) illustrates this multiscale strategy.Facing the long term needs of experimental irradiations and the ageing of present MTRs, it was thought necessary to implement a new generation high performance MTR in Europe for supporting existing and future nuclear reactors. The Jules Horowitz Reactor (JHR) project copes with this context. It is funded by an international consortium and will start operation in 2014. JHR will provide improved performances such as high neutron flux (1015 n/cm2/s above 0.1 MeV) in representative environments (coolant, pressure, temperature) with online monitoring of experimental parameters (including stress and strain control). Experimental devices designing, such as high dpa and small thermal gradients experiments, is now a key objective requiring a broad collaboration to put together present scientific state of art, end-users requirements and advanced instrumentation. To cite this article: D. Iracane et al., C. R. Physique 9 (2008).  相似文献   

12.
In this article, we describe the different methods to simulate Multi-Conjugate Adaptive Optics (MCAO) systems. First, analytical (error-budget type) and semi-analytical (Fourier) methods are described. We then describe the different modules required to make end-to-end (Monte Carlo) simulations of these systems. Finally, we present some of the computational challenges associated with the simulation of MCAO on Extremely Large Telescopes (ELTs). To cite this article: M. Le Louarn et al., C. R. Physique 6 (2005).  相似文献   

13.
Nucleation processes play a key role in the microstructure evolution of metallic alloys during thermomechanical treatments. These processes can involve phase transformations (such as precipitation) and structural instabilities (such as recrystallisation). Although the word ‘nucleation’ is used in both cases, the situation is profoundly different for precipitation and for recrystallisation on which this article is focussed. In the case of precipitation, species are conserved and the underlying physics is stochastic fluctuations, allowing the apparition of critical germs of the new phase. In the case of recrystallisation, the underlying physical phenomenon is the progressive growth of subgrain structures leading to an unstable configuration, allowing a dislocation free grain to grow at the expense of a dislocated one. The two cases require different types of modelling which are presented in the article. To cite this article: Y. Bréchet, G. Martin, C. R. Physique 7 (2006).  相似文献   

14.
The Gemini Observatory has developed an extensive Adaptive Optics (AO) program, including Classical AO, Laser Guide Star (LGS) AO, Multi-Conjugate AO (MCAO), extreme AO (eXAO) and Ground Layer AO (GLAO). Most of these instruments use one or several LGSs. A laser has been in operation at Gemini since May 2005. Most of the laser related systems (beam transport, launch, safety systems) have been developed in house. These are major components, requiring a development effort not to be underestimated. In this article, we propose to share the Gemini experience in terms of practical issues and calibration requirements associated with the use of lasers in AO. To cite this article: F. Rigaut, C. d'Orgeville, C. R. Physique 6 (2005).  相似文献   

15.
LINC-NIRVANA is a Fizeau (imaging) interferometer exploiting the full spatial resolution of a 23 m class telescope in the combined beam of the Large Binocular Telescope supported through Multi-Conjugated Adaptive Optics (MCAO). By means of science cases, we show how LINC-NIRVANA takes advantage of the MCAO, increasing the sky coverage of the instrument and the field of view for the Fringe and Flexure tracker. We introduce the MCAO system of LINC-NIRVANA in detail, which in a first step will be installed with two deformable mirrors per arm and has the provision to be upgraded with a third mirror. The MCAO system implements several novel concepts proposed for extremely large telescopes, such as layer oriented MCAO, optical co-adding of guide stars, or Multiple Field of View sensing. LINC-NIRVANA will demonstrate some of the concepts for the first time on sky. To cite this article: W. Gaessler et. al., C. R. Physique 6 (2005).  相似文献   

16.
We present new theoretical concepts for Fresnel phase matching. A guided wave approach is described, which allows us to intrinsically take into account all the physical processes involved. To cite this article: M. Raybaut et al., C. R. Physique 8 (2007).  相似文献   

17.
A review of some developments in localization effects on conductivity and magnetoconductivity is given. The determination of inelastic scattering rates for electrons in thin disordered metallic films is emphasized. In two-dimensional disordered superconductors aboveT c , the superconducting fluctuations play an essential role. Recent work on the interplay of localization and superconducting fluctuation effects in determining the magnetoconductivity and the inelastic rate is described.  相似文献   

18.
A new attempt to solve the phase matching problem for semiconductor-based frequency conversion devices, based on the implementation of intrinsic birefringence in artificial materials, is discussed. The first results concerning the growth and characterization of ultrashort period superlattices are presented. To cite this article: J.-M. Jancu et al., C. R. Physique 8 (2007).  相似文献   

19.
In this article we will first discuss the construction of brane world models being built either by intersecting D6-branes in type IIA orientifolds or, in the T-dual mirror picture, by D3- plus D7-branes with f-flux in type IIB orientifolds. We will show how their effective action is obtained by the calculation of scattering amplitudes between open and closed string states on intersecting D6-branes respectively on D3- and D7-branes. Secondly, turning on type IIB 3-form fluxes we will compute the induced soft supersymmetry breaking terms for the matter fields, like gaugino and scalar field masses. Finally, we will discuss the generation of 3-form flux in type IIB supergravity, which can be associated to the dynamical formation of a gaugino condensate in the confining phase of the dual N=1* gauge theory. To cite this article: D. Lüst, C. R. Physique 5 (2004).

Résumé

Dans cet article nous discutons tout d'abord la construction de modèles de monde branaires construits soit par intersection de branes D6 dans des orientifolds de type IIA ou, dans la représentation T-duale, par des branes de type D3 et D7 avec des flux f dans les orientifolds de type IIB. Nous montrons comment obtenir leurs actions effectives en calculant les amplitudes de diffusion sur des intersections de branes de D6 et aussi sur des branes de type D3 et D7. Ensuite, nous allumons des flux pour la 3-forme de type IIB et nous calculons les termes de brisure douce de la supersymétrie pour les champs de matière, comme les masses du jaugino et des champs scalaires. Enfin, nous discutons la génération de flux pour la 3-forme de type IIB en supergravité, qui peut-être associée à la dynamique de la formation de condensat de jaugino dans la phase confinante de la théorie de jauge duale N=1*. Pour citer cet article : D. Lüst, C. R. Physique 5 (2004).  相似文献   

20.
The structure in the symmetrical triblock copolymers PEO-b-PPO-b-PEO and their blend with PEO, studied by small angle x-ray scattering (SAXS), wide angle x-ray scattering (WAXS), and differential scanning calorimetry (DSC), pass from melt to the solid state on cooling. On subsequent heating back to the melt, they pass through disordered and ordered molten states, crystalline structure, and finally back to a disordered melt state. At high temperatures these systems are in the melt in the disordered state approximately described by the mean-field theory. The characteristic lengths of these systems, obtained from SAXS, are proportional to R g . At lower temperatures, their structure changes to a disordered state which can be described by the concentration fluctuation theory. During cooling, the disordered melt structure changes abruptly into the ordered melt structure. The crystallization destroys this melt structure, forming a new lamellar structure with different periodicity. During heating near the melting point, lamellar periodicity increases very steeply. After melting, the crystalline structure transforms directly to the disordered state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号