首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper discusses two stochastic approaches to computing the propagation of uncertainty in numerical simulations: polynomial chaos and stochastic collocation. Chebyshev polynomials are used in both cases for the conventional, deterministic portion of the discretization in physical space. For the stochastic parameters, polynomial chaos utilizes a Galerkin approximation based upon expansions in Hermite polynomials, whereas stochastic collocation rests upon a novel transformation between the stochastic space and an artificial space. In our present implementation of stochastic collocation, Legendre interpolating polynomials are employed. These methods are discussed in the specific context of a quasi-one-dimensional nozzle flow with uncertainty in inlet conditions and nozzle shape. It is shown that both stochastic approaches efficiently handle uncertainty propagation. Furthermore, these approaches enable computation of statistical moments of arbitrary order in a much more effective way than other usual techniques such as the Monte Carlo simulation or perturbation methods. The numerical results indicate that the stochastic collocation method is substantially more efficient than the full Galerkin, polynomial chaos method. Moreover, the stochastic collocation method extends readily to highly nonlinear equations. An important application is to the stochastic Riemann problem, which is of particular interest for spectral discontinuous Galerkin methods.  相似文献   

2.
主要讨论了一类非线性快慢系统非局部问题的摄动解,在适当的条件下,根据不同边界层利用伸长变量和幂级数展开理论,构造了问题的形式渐近解,并利用微分不等式理论在整个区间上证明了形式渐近解的一致有效性,把奇摄动问题的摄动解推广到快慢系统非局部问题的摄动解.  相似文献   

3.
This paper discusses two stochastic approaches to computing the propagation of uncertainty in numerical simulations: polynomial chaos and stochastic collocation. Chebyshev polynomials are used in both cases for the conventional, deterministic portion of the discretization in physical space. For the stochastic parameters, polynomial chaos utilizes a Galerkin approximation based upon expansions in Hermite polynomials, whereas stochastic collocation rests upon a novel transformation between the stochastic space and an artificial space. In our present implementation of stochastic collocation, Legendre interpolating polynomials are employed. These methods are discussed in the specific context of a quasi-one-dimensional nozzle flow with uncertainty in inlet conditions and nozzle shape. It is shown that both stochastic approaches efficiently handle uncertainty propagation. Furthermore, these approaches enable computation of statistical moments of arbitrary order in a much more effective way than other usual techniques such as the Monte Carlo simulation or perturbation methods. The numerical results indicate that the stochastic collocation method is substantially more efficient than the full Galerkin, polynomial chaos method. Moreover, the stochastic collocation method extends readily to highly nonlinear equations. An important application is to the stochastic Riemann problem, which is of particular interest for spectral discontinuous Galerkin methods.  相似文献   

4.
This paper is a follow-up to the author’s previous paper on convex optimization. In that paper we began the process of adjusting greedy-type algorithms from nonlinear approximation for finding sparse solutions of convex optimization problems. We modified there the three most popular greedy algorithms in nonlinear approximation in Banach spaces-Weak Chebyshev Greedy Algorithm, Weak Greedy Algorithm with Free Relaxation, and Weak Relaxed Greedy Algorithm-for solving convex optimization problems. We continue to study sparse approximate solutions to convex optimization problems. It is known that in many engineering applications researchers are interested in an approximate solution of an optimization problem as a linear combination of elements from a given system of elements. There is an increasing interest in building such sparse approximate solutions using different greedy-type algorithms. In this paper we concentrate on greedy algorithms that provide expansions, which means that the approximant at the mth iteration is equal to the sum of the approximant from the previous, (m ? 1)th, iteration and one element from the dictionary with an appropriate coefficient. The problem of greedy expansions of elements of a Banach space is well studied in nonlinear approximation theory. At first glance the setting of a problem of expansion of a given element and the setting of the problem of expansion in an optimization problem are very different. However, it turns out that the same technique can be used for solving both problems. We show how the technique developed in nonlinear approximation theory, in particular, the greedy expansions technique, can be adjusted for finding a sparse solution of an optimization problem given by an expansion with respect to a given dictionary.  相似文献   

5.
In this article we aim to furnish arguments for further considerations on some procedures commonly used in Extended Thermodynamics, such as the Taylor’s expansions around equilibrium or the transition to subsystems. The initial impulse for these considerations lies in the fact that we have found, for a 14 moments model, the exact closure to the conditions arising from the entropy principle and the material objectivity principle, without using Taylor’s expansions. These generated some problems; one of these concerns the relationship between system and subsystems, another one concerns the convexity of entropy and hyperbolicity; a third problem deals with the correct moments to be used as independent variables, those suggested by the classical limit of the relativistic moment theory. We will give suggestions for the solution of these problems.  相似文献   

6.
With the aim of understanding the mathematical structure of the fluctuation-dissipation theorem in non-equilibrium statistical physics and then constructing a mathematical principle in the modeling problem for time series analysis, we have developed the theory of KM2O-Langevin equations for discrete time stochastic processes. In this paper, as a new method for model analysis in the theory of KM2O-Langevin equations, we show that block frames provide a natural mathematical language for dealing with minimum norm expansions of multi-dimensional stochastic processes which do not necessarily satisfy stationarity and non-degeneracy conditions.  相似文献   

7.
Starting with a stochastic volatility model, in which the volatility depends on a nonlinear function of a fast varying diffusion, and assuming the fast diffusion is mean reverting, the problem of pricing European options is considered in this paper. Uniform asymptotic expansions of the option price are obtained. The formal expansions are justified and the uniform error bounds are derived using outer and inner expansions of the option prices.  相似文献   

8.
We propose a unified approach to the theory of Riesz transforms and conjugacy in the setting of multi-dimensional orthogonal expansions. The scheme is supported by numerous examples concerning, in particular, the classical orthogonal expansions in Hermite, Laguerre, and Jacobi polynomials. A general case of expansions associated to a regular or singular Sturm-Liouville problem is also discussed.  相似文献   

9.
We construct new integral transformations and present their applications to the construction of exact solutions of some boundary-value problems of mathematical physics. We solve the problem of diffraction of acoustic waves in a circular cone truncated by two spherical surfaces. We also solve the initial boundary-value problem of the theory of heat conduction for the same truncated cone under nonzero initial conditions.  相似文献   

10.
This paper presents a nonlinear, multi-phase and stochastic dynamical system according to engineering background. We show that the stochastic dynamical system exists a unique solution for every initial state. A stochastic optimal control model is constructed and the sufficient and necessary conditions for optimality are proved via dynamic programming principle. This model can be converted into a parametric nonlinear stochastic programming by integrating the state equation. It is discussed here that the local optimal solution depends in a continuous way on the parameters. A revised Hooke–Jeeves algorithm based on this property has been developed. Computer simulation is used for this paper, and the numerical results illustrate the validity and efficiency of the algorithm.  相似文献   

11.
张震球 《数学进展》2001,30(2):103-110
本文通过建立与特殊Hermite展开相对应的Littlewood-Paley分解和相关的扭曲卷积核的L2估计,得到特殊Hermite展开的乘子定理,作为该结果的应用,给出了Hermite函数及Laguerre函数展开的乘子定理。  相似文献   

12.
We study optimal stochastic control problems with jumps under model uncertainty. We rewrite such problems as stochastic differential games of forward–backward stochastic differential equations. We prove general stochastic maximum principles for such games, both in the zero-sum case (finding conditions for saddle points) and for the nonzero sum games (finding conditions for Nash equilibria). We then apply these results to study robust optimal portfolio-consumption problems with penalty. We establish a connection between market viability under model uncertainty and equivalent martingale measures. In the case with entropic penalty, we prove a general reduction theorem, stating that a optimal portfolio-consumption problem under model uncertainty can be reduced to a classical portfolio-consumption problem under model certainty, with a change in the utility function, and we relate this to risk sensitive control. In particular, this result shows that model uncertainty increases the Arrow–Pratt risk aversion index.  相似文献   

13.
The present paper deals with the problem of constructing and proving asymptotic expansions for nonlinear, singularly perturbed difference equations. New methods for the construction of asymptotic expansions are presented and compared with well-known ones. For the proof of their validity, fundamental principles for the treatment of nonlinear singular perturbation problems are applied, based on the concepts of e-stability, formal asymptotic expansions, matching and asymptotic expansions. The results are derived from a general theory of asymptotic expansions of nonlinear operator equations that has been developed recently by the author.  相似文献   

14.
We consider a quasilinear parabolic boundary value problem, the elliptic part of which degenerates near the boundary. In order to solve this problem, we approximate it by a system of linear degenerate elliptic boundary value problems by means of semidiscretization with respect to time. We use the theory of degenerate elliptic operators and weighted Sobolev spaces to find a priori estimates for the solutions of the approximating problems. These solutions converge to a local solution, if the step size of the time-discretization goes to zero. It is worth pointing out that we do not require any growth conditions on the nonlinear coefficients and right-hand side, since we lire able to prove L∞ - estimates.  相似文献   

15.
讨论含多个参数的高阶非线性方程的摄动解,在适当的条件下,先构造出外部解,再根据不同的边界层,利用伸展变量和幂级数展开式理论,构造问题的形式渐近解,最后利用微分不等式理论证明渐近解的一致有效性和渐近形态,把奇摄动非线性问题中的参数推广到多个参数.  相似文献   

16.
An initial boundary value problem for a quasilinear equation of pseudoparabolic type with a nonlinear boundary condition of the Neumann–Dirichlet type is investigated in this work. From a physical point of view, the initial boundary value problem considered here is a mathematical model of quasistationary processes in semiconductors and magnets, which takes into account a wide variety of physical factors. Many approximate methods are suitable for finding eigenvalues and eigenfunctions in problems where the boundary conditions are linear with respect to the desired function and its derivatives. Among these methods, the Galerkin method leads to the simplest calculations. On the basis of a priori estimates, we prove a local existence theorem and uniqueness for a weak generalized solution of the initial boundary value problem for the quasilinear pseudoparabolic equation. A special place in the theory of nonlinear equations is occupied by the study of unbounded solutions, or, as they are called in another way, blow-up regimes. Nonlinear evolutionary problems admitting unbounded solutions are globally unsolvable. In the article, sufficient conditions for the blow-up of a solution in a finite time in a limited area with a nonlinear Neumann–Dirichlet boundary condition are obtained.  相似文献   

17.
We introduce and analyze a model for the interaction of shocks with a dispersive wave envelope. The model mimicks the Zakharov system from weak plasma turbulence theory but replaces the linear wave equation in that system by a nonlinear wave equation allowing the formation of shocks. This paper considers a weak coupling in which the nonlinear wave evolves independently but appears as the potential in the time-dependent Schrodinger equation governing the dispersive wave. We first solve the Riemann problem for the system by constructing solutions to the Schrodinger equation that are steady in a frame of reference moving with the shock. Then we add a viscous diffusion term to the shock equation and by explicitly constructing asymptotic expansions in the (small) diffusion coefficient, we show that these solutions are zero diffusion limits of the regularized problem. The expansions are unusual in that it is necessary to keep track of exponentially small terms to obtain algebraically small terms. The expansions are compared to numerical solutions. We then construct a family of time-dependent solutions in the case that the initial data for the nonlinear wave equation evolves to a shock as tt* < ∞. We prove that the shock formation drives a finite time blow-up in the phase gradient of the dispersive wave. While the shock develops algebraically in time, the phase gradient blows up logarithmically in time. We construct several explicit time-dependent solutions to the system, including ones that: (a) evolve to the steady states previously constructed, (b) evolve to steady states with phase discontinuities (which we call phase kinked steady states), (c) do not evolve to steady states.  相似文献   

18.
In this article, we have introduced a Taylor collocation method, which is based on collocation method for solving initial-boundary value problem describing the process of cooling of a semi-infinite body by radiation. This method is based on first taking the truncated Taylor expansions of the solution function in the fractional differential equation and then substituting their matrix forms into the equation. Using collocation points, we have the system of nonlinear algebraic equation. Then, we solve the system of nonlinear algebraic equation using Maple 13 and we have the coefficients of Taylor expansion. In addition, numerical results are presented to demonstrate the effectiveness of the proposed method.  相似文献   

19.
In this work we introduce an algebra of tempered generalized functions. The tempered distributions are embedded in this algebra via their Hermite expansions. The Fourier transform is naturally extended to this algebra in such a way that the usual relations involving multiplication, convolution and differentiation are valid. Furthermore, we give a generalized Itô formula in this context and some applications to stochastic analysis.  相似文献   

20.
The nonlinear filtering problem of estimating the state of a linear stochastic system from noisy observations is solved for a broad class of probability distributions of the initial state. It is shown that the conditional density of the present state, given the past observations, is a mixture of Gaussian distributions, and is parametrically determined by two sets of sufficient statistics which satisfy stochastic DEs; this result leads to a generalization of the Kalman–Bucy filter to a structure with a conditional mean vector, and additional sufficient statistics that obey nonlinear equations, and determine a generalized (random) Kalman gain. The theory is used to solve explicitly a control problem with quadratic running and terminal costs, and bounded controls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号