首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 635 毫秒
1.
雷达  孟根其其格  张荷亮  智颖飙 《物理学报》2013,62(24):248502-248502
建立一种平行栅碳纳米管阵列阴极,利用悬浮球模型和镜像电荷法进行计算,给出碳纳米管顶端表面电场与电场增强因子的解析式. 在此基础上,进一步分析器件各类参数以及接触电阻对阴极电子发射性能的影响. 分析表明,碳纳米管间距大约为2倍碳纳米管高度时阵列阴极的分布密度最佳,靠边缘部位的碳纳米管发射电子能力比其中心部位的大;除碳纳米管的长径比之外,栅极宽度和栅极间距也对电场增强因子有一定作用;接触电阻的存在大幅度降低碳纳米管顶端表面电场与发射电流,而接触电阻高于800 kΩ时,器件对阳极驱动电压的要求更高. 关键词: 平行栅碳纳米管阵列 悬浮球 场增强因子 接触电阻  相似文献   

2.
王新庆  李良  褚宁杰  金红晓  葛洪良 《物理学报》2008,57(11):7173-7177
以纳米碳管阵列为研究对象,利用镜像悬浮球模型及Fowler-Nordheim电流密度公式,对纳米碳管阵列的场发射电流密度进行计算,进而综合考虑场发射增强因子及场发射电流密度对纳米碳管阵列场发射性能进行定量优化.参考碳管阵列场发射电流密度最大值及场发射增强因子,表明当纳米碳管阵列间距为碳管高度十分之一时,纳米碳管阵列的场发射性能得到优化.与以前的理论估算结果相比,优化的阵列间距进一步减小.当纳米碳管间距过大,场发射增强因子增加,而场发射电流密度会在更大程度上减小;当纳米碳管密度较大时,场发射增强因子受到静电 关键词: 纳米碳管 场发射 增强因子 电流密度  相似文献   

3.
The problem of determining the field enhancement factor in field-emission cathodes based on carbon nanotubes (CNTs) is considered. The electrostatic problem of finding the field enhancement factor for nanotubes with different shapes of the tip as a function of the angle the nanotube makes with the cathode surface and of the interelectrode spacing is solved. The dependence of the electric field enhancement factor on the spacing between vertically oriented nanotubes constituting an array is derived. Making allowance for this dependence gives an optimal value of the surface density of nanotubes in the array at which the emission current density is maximal. The I—V characteristic of CNT-based cathodes is studied with regard to the statistical straggling of their orientation angles. This I—V characteristic is compared with the characteristic obtained with regard to the statistical straggling of the CNT geometrical parameters.  相似文献   

4.
建立一种平行背栅极碳纳米管阵列阴极,基于电场叠加原理,利用镜像电荷法对其进行计算,给出碳纳米管顶端表面电场增强因子。在此基础上,进一步分析器件各类参数对电场增强因子的影响。分析表明,碳纳米管阵列阴极具有最佳阵列密度,其对应碳纳米管间距大约为碳纳米管高度的两倍,靠阴极阵列边缘部位的碳纳米管发射电子能力比其中心部位的大。除了碳纳米管的长径比之外,栅极宽度、栅极厚度和栅极间距等也对电场增强因子有一定的影响:栅极越宽,场增强因子越大;而栅极厚度、栅极间距越大,场增强因子就越小。  相似文献   

5.
朱亚波  王万录  廖克俊 《物理学报》2002,51(10):2335-2339
研究了外电场、碳纳米管自身线度、尤其管的阵列密度对碳纳米管的场发射性能的影响,从理论上深入探索碳纳米管阵列的电场增强因子并提出改善其场发射电子性能的有效途径.研究结果表明,碳纳米管阵列的电场增强因子的数量级一般为102—103,并对任何长径比的碳纳米管阵列,都对应着一个最佳阵列密度,当碳纳米管阵列密度取此最佳密度值时,其电场增强因子明显提高.这里的理论研究对弄清碳纳米管的场发射机理及实验合成高发射性能的碳纳米管阵列有一定的意义 关键词: 碳纳米管阵列 最佳阵列密度 电场增强因子 长径比  相似文献   

6.
Modeling and simulation for the field emission of carbon nanotubes array   总被引:3,自引:0,他引:3  
To optimize the field emission of the infinite carbon nanotubes (CNTs) array on a planar cathode surface, the numerical simulation for the behavior of field emission with finite difference method was proposed. By solving the Laplace equation with computer, the influence of the intertube distance, the anode–cathode distance and the opened/capped CNT on the field emission of CNTs array were taken into account, and the results could accord well with the experiments. The simulated results proved that the field enhancement factor of individual CNT is largest, but the emission current density is little. Due to the enhanced screening of the electric field, the enhancement factor of CNTs array decreases with decreasing the intertube distance. From the simulation the field emission can be optimized when the intertube distance is close to the tube height. The anode–cathode distance hardly influences the field enhancement factor of CNTs array, but can low the threshold voltage by decreasing the anode–cathode distance. Finally, the distribution of potential of the capped CNTs array and the opened CNTs array was simulated, which the results showed that the distribution of potential can be influenced to some extent by the anode–cathode distance, especially at the apex of the capped CNTs array and the brim of the opened CNTs array. The opened CNTs array has larger field enhancement factor and can emit more current than the capped one.  相似文献   

7.
Effect of temperature and aspect ratio on the field emission properties of vertically aligned carbon nanofiber and multiwalled carbon nanotube thin films were studied in detail. Carbon nanofibers and multiwalled carbon nanotube have been synthesized on Si substrates via direct current plasma enhanced chemical vapor deposition technique. Surface morphologies of the films have been studied by a scanning electron microscope, transmission electron microscope and an atomic force microscope. It is found that the threshold field and the emission current density are dependent on the ambient temperature as well as on the aspect ratio of the carbon nanostructure. The threshold field for carbon nanofibers was found to decrease from 5.1 to 2.6 V/μm when the temperature was raised from 300 to 650 K, whereas for MWCNTs it was found to decrease from 4.0 to 1.4 V/μm. This dependence was due to the change in work function of the nanofibers and nanotubes with temperature. The field enhancement factor, current density and the dependence of the effective work function with temperature and with aspect ratio were calculated and we have tried to explain the emission mechanism.  相似文献   

8.
Recent experiments have shown that carbon nanotubes exhibit excellent electron field emisson properties with high current densities at low electric fields. Here we present theoretical investigations that incorporate geometrical effects and the electronic structure of nanotubes. The electric field is dramatically enhanced near the cap of a nanotube with a large variation of local field distribution. It is found that deviation from linear Fowler-Nordheim behavior occurs due to the variation of the local field in the electron tunneling region. The maximum current per tube is of the order of 10 microA. Local and microscopic aspects of field emission from nanotubes are also presented.  相似文献   

9.
In order to optimize the field emission from carbon nanotubes (CNTs) array by the emission current density, the calculation of the field emission was extended with the floating sphere model and the Fowler–Nordheim equation, and the trend of the emission current density versus the intertube distance (the distance between the nearest CNTs) was mainly discussed in this paper. Only considering the field enhancement factor in the previous works, the field emission from CNTs array was optimized only by possibly decreasing the intertube distance with the maximal field enhancement factor. Herein, both the field enhancement factor and the emission current density were taken into account, the field emission from CNTs array could be optimized analytically with the intertube distance of 10th of the tube height, which was much smaller than the estimated value and the experiment result.  相似文献   

10.
A procedure for optimizing a field-emission cathode based on carbon nanotubes (CNTs) is developed. An array of identical equidistant vertical CNTs is considered. The optimization procedure takes into account the effect of screening of an electric field by neighboring nanotubes by solving a Laplace equation and the thermal instability of nanotubes, which limits the emission current density of a nanotube, by solving a heat conduction equation. The relation between the emission current and the applied voltage is described by the Fowler-Nordheim relationship containing the CNT tip temperature as a parameter. Upon optimization, the optimum distance between CNTs that ensures the maximum emission current density is calculated. The calculation results demonstrate that this parameter depends substantially on both the applied voltage and the nanotube geometry. These dependences are weakly sensitive to the choice of the transport coefficients (thermal conductivity, electrical conductivity) of nanotubes.  相似文献   

11.
The field emission performances of normal-gate cold cathode, which is composed of different multi-wall carbon nanotubes (MWCNTs) bundles array are calculated. The device parameters such as the arrangement of bundles, array density, gate location, gate voltage, anode voltages and anode–cathode distance affect the field emission properties, which is discussed in detail. The results reveal that the hexagon bundles array needs a lower threshold voltage than square array to reach high field enhancement factor and large emission current density. The emission current density is two orders larger than that of the oxide emitter. The optimal bundles array densities of hexagon and square array to get field enhancement factor are 0.0063 and 0.00375 μm−2, respectively. Meanwhile, the field emission performances are impacted critically by gate location and gate voltage. Field emission properties changed little while the anode–cathode distance varies within tens of micrometers, which increases the process-friendliness of CNTs field emission devices.  相似文献   

12.
Field electron emission (FE) is a quantum tunneling process in which electrons are injected from materials (usually metals) into a vacuum under the influence of an applied electric field. In order to obtain usable electron current, the conventional way is to increase the local field at the surface of an emitter. For a plane metal emitter with a typical work function of 5 eV, an applied field of over 1 000 V/μm is needed to obtain a significant current. The high working field (and/or the voltage between the electrodes) has been the bottleneck for many applications of the FE technique. Since the 1960s, enormous effort has been devoted to reduce the working macroscopic field (voltage). A widely adopted idea is to sharpen the emitters to get a large surface field enhancement. The materials of emitters should have good electronic conductivity, high melting points, good chemical inertness, and high mechanical stiffness. Carbon nanotubes (CNTs) are built with such needed properties. As a quasi-one-dimensional material, the CNT is expected to have a large surface field enhancement factor. The experiments have proved the excellent FE performance of CNTs. The turn-on field (the macroscopic field for obtaining a density of 10 μA/cm2) of CNT based emitters can be as low as 1 V/μm. However, this turn-on field is too good to be explained by conventional theory. There are other observations, such as the non-linear Fowler-Nordheim plot and multi-peaks field emission energy distribution spectra, indicating that the field enhancement is not the only story in the FE of CNTs. Since the discovery of CNTs, people have employed more serious quantum mechanical methods, including the electronic band theory, tight-binding theory, scattering theory and density function theory, to investigate FE of CNTs. A few theoretical models have been developed at the same time. The multi-walled carbon nanotubes (MWCNTs) should be assembled with a sharp metal needle of nano-scale radius, for which the FE mechanism is more or less clear. Although MWCNTs are more common in present FE applications, the single-walled carbon nanotubes (SWCNTs) are more interesting in the theoretical point of view since the SWCNTs have unique atomic structures and electronic properties. It would be very interesting if people can predict the behavior of the well-defined SWCNTs quantitatively (for MWCNTs, this is currently impossible). The FE as a tunneling process is sensitive to the apex-vacuum potential barrier of CNTs. On the other hand, the barrier could be significantly altered by the redistribution of excessive charges in the micrometer long SWCNTs, which have only one layer of carbon atoms. Therefore, the conventional theories based upon the hypothesis of fixed potential (work function) would not be valid in this quasi-one-dimensional system. In this review, we shall focus on the mechanism that would be responsible for the superior field emission characteristics of CNTs. We shall introduce a multi-scale simulation algorithm that deals with the entire carbon nanotube as well as the substrate as a whole. The simulation for (5, 5) capped SWCNTs with lengths in the order of micrometers is given as an example. The results show that the field dependence of the apex-vacuum electron potential barrier of a long carbon nanotube is a more pronounced effect, besides the local field enhancement phenomenon.  相似文献   

13.
采用丝网印刷法制备了一种大面积的碳纳米管阴极,表征了阴极表面碳纳米管的形貌及分布.研究了该阴极在不同脉冲条件下的高压脉冲发射特性,分析了发射时阴极面等离子体产生和发射点的分布.研究表明:碳纳米管阴极的脉冲发射机制为爆炸电子发射,在平均场强为16.7V/μm的单脉冲电场下,阴极的最高发射电流密度为99 A/cm2.在平均场强为15.4 V/μm的双脉冲电场下,阴极的最高发射电流密度为267 A/cm2.碳纳米管阴极可以作为强流电子束源在高能微波器件中得到应用. 关键词: 强流脉冲电子束 碳纳米管 阴极 丝网印刷  相似文献   

14.
We investigated the influence of growth time on field emission properties of multi-walled carbon nanotubes deposited on silicon nanoporous pillar array (MWCNTs/Si-NPA), which were fabricated by thermal chemical vapour deposition at 800 °C for 5, 15 and 25 min respectively, to better understand the origins of good field emission properties. The results showed that the MWCNTs/Si-NPA grown for 15 min had the highest field emission efficiency of the three types of samples. Morphologies of the products were examined by field-emission scanning electron microscope, and the excellent field emission performance was attributed not only to the formation of a nest array of multi-walled carbon nanotubes, which would largely reduce the electrostatic shielding among the emitters and resulted in a great enhancement factor, but also to the medium MWCNTs density films, there was an ideal compromise between the emitter density and the intertube distance, which also could effectively avoid electrostatic shielding effects, along with a high emitter density.  相似文献   

15.
纳米碳管阵列场增强因子的计算   总被引:2,自引:0,他引:2       下载免费PDF全文
采用悬浮球模型,结合对称的镜像电荷层方法,对静电场中纳米碳管阵列的场增强因子进行了计算,并在考虑极板间距的情况下,对其计算结果做了修正.结果表明:纳米碳管阵列的间距对纳米碳管阵列的场发射性能影响很大.当纳米碳管阵列中碳管间距小于碳管高度时,场增强因子随间距的减小而急剧减小;而当碳管间距显著大于碳管高度时,场增强因子几乎不变.但当考虑阴阳极之间单位面积通过的场发射电流时,可论证当管间距与管高度相若时,能使场发射电流密度最佳(最大).另外,极板间距对场增强因子的影响很小,但是可以通过减小极板间距,来降低纳米碳管作为场发射体的场发射的开启电压,优化纳米碳管的场发射性能. 关键词: 纳米碳管阵列 场增强因子 开启电压  相似文献   

16.
"通过热化学气相沉积的方法将碳纳米管生长到硅纳米孔柱阵列衬底上.采用场发射扫描电子显微镜、透射电子显微镜、高分辨透射电子显微镜、拉曼光谱和X射线能谱对所制备的样品形貌、组成进行了分析.结果发现:所制备产物为一种具有面积大、准周期性的碳纳米管/硅巢状阵列复合结构.能谱分析表明碳纳米管仅含有碳元素.对样品进行场发射性能测试表明该结构开启电压为1.3 MV/m,当外加电压为4.26 MV/m,发射电流为5 mA/cm2.由FN公式计算相应的场增强因子约为1.1£104.碳纳米管/硅纳米孔柱阵列好的场发射性能被归  相似文献   

17.
A hexagon pitch carbon nanotube (CNT) array vertical to the normal gate of cold cathode field emission displayer (FED) is simulated by solving the Laplace equation. The calculated results show that the normal gate causes the electric field around the CNT tops to be concentrated and emission electron beam become a column. The field enhancement factor and the emission current intensity step up greatly compared with those of diode structure. Emission current density increases rapidly with the decrease of normal-gate aperture. The gate voltage exerts a critical influence on the emission current.  相似文献   

18.
Field emission with high current density at low operating voltage was found for the yarns obtained by solid state spinning process from forest of vertically aligned multiwall carbon nanotubes. The nanotube forest was produced catalytically by CVD method. It is found that only a small fraction of carbon nanotubes from their total amount in the yarn yields to electron emission from its free end. This led to resistive heating of the emitting tubes and limiting of the emission current. The field emission microscopy pictures of MWNT yarn in free-end geometry appears to be very different from that of the conventional non-yarn carbon nanotube-based cathodes described in all previous studies. The FEM patterns are found to consist of the set of line and arc segments rather than a set of spots. Possible explanation of this effect is presented and discussed. The field emission from the lateral side of the yarns showed the self-enhanced currents increasing with operation time. We assume that this current increase may be due to untwisting and unwrapping of yarns resulted of application of the electric field. The lowest threshold field of about 0.7 V/μm was obtained after a few cycles of applied field increase. The prototypes of cathodoluminescent lamps and alphanumerical indicators based on MWNT twist-yarn cold cathodes are demonstrated. PACS 79.70.+q; 61.46.Fg; 85.45.Db  相似文献   

19.
The field electron emission of carbon nanotubes has been heavily studied over the past two decades for various applications, such as in display technologies, microwave amplifiers, and spacecraft propulsion. However, a commercializable lightweight and internally gated electron source has yet to be realized. This work presents the fabrication and testing of a novel internally gated carbon nanotube field electron emitter. Several specific methods are used to prevent electrical shorting of the gate layer, a common failure for internally gated devices. A unique design is explored where the etch pits extend into the silicon substrate and isotropic etching is used to create a lateral buffer zone between the gate and carbon nanotubes. Carbon nanotubes are self-aligned to and within 10 microns from the gate, which creates large electric fields at low potential inputs. Initial tests confirm high field emission performance with an anode current density (based on total area of the device) of 293 μA?cm?2 and a gate current density of 1.68 mA?cm?2 at 250 V.  相似文献   

20.
王益军  严诚 《物理学报》2015,64(19):197304-197304
本文运用密度泛函理论和金属电子论, 深入研究了碳纳米管场致发射电流的变化规律. 结果显示其发射电流密度取决于体系的态密度、赝能隙、管长和局域电场, 在不同范围电场下的变化规律不同. 在较低电场下, 发射电流密度随电场增强而近似线性增大(对应的宏观电场须小于18 V· μm-1); 但在较高电场下, 发射电流密度随外电场增加呈现非周期性振荡增长趋势, 碳纳米管表现为电离发射. 本文进一步研究了金属性碳纳米管电导率在不同电场下的变化规律.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号