首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chemically structured surfaces are discussed which consist of patterns of lyophilic and lyophobic surface domains. Wetting layers on top of these surfaces attain a variety of morphologies and undergo morphological wetting transitions. One convenient way to explore these transitions experimentally is by changing the total volume of the wetting layer.  相似文献   

2.
On rough surfaces, two distinct wetting modes can appear. These two states are usually described by the theories of Cassie (drops suspended on top of roughness features) and Wenzel (drops impaled on roughness features). Whereas the wetting transition from the Cassie to the Wenzel state has been relatively well studied both experimentally and theoretically, the question of whether metastable Wenzel drops exist and how they transition to the Cassie state has remained open. In this work, we study the wetting behavior of microstructured post surfaces coated with a hydrophobic fluoropolymer. Through condensation, the formation of metastable Wenzel droplets is induced. We show that under certain conditions drops can transition from the Wenzel to the Cassie state.  相似文献   

3.
Wetting and wetting transitions on copper-based super-hydrophobic surfaces   总被引:8,自引:0,他引:8  
Rough and patterned copper surfaces were produced using etching and, separately, using electrodeposition. In both of these approaches the roughness can be varied in a controlled manner and, when hydrophobized, these surfaces show contact angles that increase with increasing roughness to above 160 degrees . We show transitions from a Wenzel mode, whereby the liquid follows the contours of the copper surface, to a Cassie-Baxter mode, whereby the liquid bridges between features on the surface. Measured contact angles on etched samples could be modeled quantitatively to within a few degrees by the Wenzel and Cassie-Baxter equations. The contact angle hysteresis on these surfaces initially increased and then decreased as the contact angle increased. The maximum occurred at a surface area where the equilibrium contact angle would suggest that a substantial proportion of the surface area was bridged.  相似文献   

4.
Superhydrophobicity is the extreme water repellence of highly textured surfaces. The field of superhydrophobicity research has reached a stage where huge numbers of candidate treatments have been proposed and jumps have been made in theoretically describing them. There now seems to be a move to more practical concerns and to considering the demands of individual applications instead of more general cases. With these developments, polymeric surfaces with their huge variety of properties have come to the fore and are fast becoming the material of choice for designing, developing, and producing superhydrophobic surfaces. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 1203–1217, 2011  相似文献   

5.
The self-assembly of block copolymers, homopolymers and surfactants on surfaces often leads to well-defined patterns with topologically or chemically distinct regions. Important recent developments in controlling the nature of the pattern include methods to produce patterns via passive adsorption of a solid substrate; coupling of substrate topology and polymer phase separation in order to effect control over pattern formation; and methods to `tune' the surface potential of the substrate to eventually control pattern formation. The use of the polymer-patterned surface as a nanolithography mask has also been demonstrated in two very interesting systems. © 1999 Elsevier Science Ltd.  相似文献   

6.
Artificial surfaces that exhibit unidirectional water spreading and superhydrophobicity are obtained by Strelitzia reginae leaves. Both green and dried leaves are used, thus exploiting the plant senescence. We demonstrate that the natural drying process of the leaves strongly affects the surface morphology and wettability. Polymeric stamps from the green leaf show an arrangement of periodic microridges/microgrooves that favor anisotropic wetting, with a water contact angle (WCA) variation of about 21% along the two principal directions. Instead, the shrinkage of the leaf tissue, as a consequence of the natural dehydration process, induces an enhancement of the superficial corrugation. This results in the establishment of a superhydrophobic state, which shows a WCA of up to 160°, and water rolling off. S. reginae leaves are therefore easily accessible stamps suitable for controlling wettability and realizing surfaces that exhibit various wetting behaviors.  相似文献   

7.
Types of surface forces determining the disjoining pressure isotherms of wetting films of low-molecular-weight alkanes on water surface are discussed. The van der Waals forces in alkane interlayers at different temperatures were calculated using a combination of exact equations of the Dzyaloshinsky—Lifshitz—Pitaevsky macroscopic theory and the multi-oscillator model for representation of the dielectric permittivity spectra of contacting bodies. Taking account of competitive action of the van der Waals and image forces allows one not only to reproduce specific features of wetting in the systems studied at different temperatures, but also to describe quantitatively the contact angles and the experimentally observed isotherms of polymolecular adsorption. The experimentally detected wetting transition in the water—pentane—vapor system was rationalized using the results of calculations mentioned above and the Derjaguin—Frumkin theory of wetting. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 256–266, February, 2008.  相似文献   

8.
Highly antireflective porous silicon surfaces with superhydrophobicity were obtained by means of chemical etching and fluoroalkylsilane self-assembly. The results show that wettability and reflectivity of these surfaces strongly depend on the etching method and the resultant surface morphology. All of the four resultant porous silicon surfaces by alkaline etching, acidic etching, thick Pt-assisted acidic etching, and thin Pt-assisted acidic etching can reduce reflectance, but the efficiency differs greatly. Except for the alkaline etching, the porous silicon surfaces produced by the other three etching methods can reach superhydrophobicity after fluoroalkylsilane modification. These differences are due to the different surface morphology and roughness. Moreover, the porous silicon surface produced by thin Pt-assisted acidic etching presents abundant holes and particles with diameters ranging from nanometers to submicrometers. This morphology enables the porous silicon surface to own a very low reflectance value that is averaged to be about 3% over the whole experimental photon wavelength spanning 300-800 nm.  相似文献   

9.
For both biological cells and synthetic microcapsules, mechanical stiffness is a key parameter since it can reveal the presence of disease in the former case and the quality of the fabricated product in the latter case. To date, however, assessing the mechanical properties of such micron-scale particles in an efficient, cost-effective means remains a critical challenge. By developing a three-dimensional computational model of fluid-filled, elastic spheres rolling on substrates patterned with diagonal stripes, we demonstrate a useful method for separating cells or microcapsules by their compliance. In particular, we examine the fluid-driven motion of these capsules over a hard adhesive surface that contains soft stripes or a weakly adhesive surface that contains "sticky" stripes. As a result of their inherently different interactions with the heterogeneous substrate, particles with dissimilar stiffness are dispersed to distinct lateral locations on the surface. Since mechanically and chemically patterned surfaces can be readily fabricated through soft lithography and can easily be incorporated into microfluidic devices, our results point to a facile method for carrying out continuous "on the fly" separation processes.  相似文献   

10.
Recent years have witnessed intense interest in multifunctional surfaces that can be designed to switch between different functional states with various external stimuli including electric field, light, pH value, and mechanical strain. The present paper is aimed to explore whether and how a surface can be designed to switch between superhydrophobicity and superhydrophilicity by an applied strain. Based on well-established theories of structure buckling and solid-liquid contact, we show that this objective may be achieved through a hierarchically wrinkled surface. We derive general recursive relations for the apparent contact angle at different levels of the hierarchical surface and investigate the thermodynamic stability of different contact states. Our study may provide useful guidelines for the development of multifunctional surfaces for many technological applications.  相似文献   

11.
The formation of liquid marbles was studied in the situation where hydrophobic particles coating the marbles "come from air". Droplets of water/ethanol solutions of various concentrations were coated with three kinds of powders: polytetrafluoroethylene, polyvinylidene fluoride and polyethylene. We established that there exists a critical concentration of ethanol, and correspondingly a critical surface tension of the water/ethanol solution allowing formation of liquid marbles. A critical surface tension depends on the kind of the powder. In parallel, wetting transitions of water/ethanol solutions were studied on the layers of the same polymer powders. The onset of wetting transitions on the powders took place at the concentrations of ethanol coinciding with those enabling the formation of liquid marbles. Wetting transitions stipulate the formation of liquid marbles when a droplet is deposited on a layer of hydrophobic powder. This assumption was validated by the experiments performed with di-iodomethane and glycerol.  相似文献   

12.
A series of surfaces with microscale checkerboard patterns consisting of continuous central lines and discontinuous lateral lines were fabricated. The surface wetting properties of these checkerboard patterns were found to be anisotropic. The central continuous lines were found to have a strong influence on the dynamic wetting properties and moving trajectories of the water droplets. The droplets move more easily in the direction parallel to the central continuous lines and less easily in the direction perpendicular to the central continuous lines. Meanwhile, the droplets' moving path tends to incline toward the central continuous lines from a tilting direction. When the microsurface was modified with a layer of nanowire, the surface wettability was found to be isotropic and superhydrophobic.  相似文献   

13.
We present calculations of the density distributions and contact angles of liquid droplets on roughened solid surfaces for a lattice gas model solved in a mean-field approximation. For the case of a smooth surface, this approach yields contact angles that are well described by Young's equation. We consider rough surfaces created by placing an ordered array of pillars on a surface, modeling so-called superhydrophobic surfaces, and we have made calculations for a range of pillar heights. The apparent contact angle follows two regimes as the pillar height increases. In the first regime, the liquid penetrates the interpillar volume, and the contact angle increases with pillar height before reaching a constant value. This behavior is similar to that described by the Wenzel equation for contact angles on rough surfaces, although the contact angles are underestimated. In the second regime, the liquid does not penetrate the interpillar volume substantially, and the contact angle is independent of the pillar height. This situation is similar to that envisaged in the Cassie-Baxter equation for contact angles on heterogeneous surfaces, but the contact angles are overestimated by this equation. For larger pillar heights, two states of the droplet can be observed, one Wenzel-like and the other Cassie-like.  相似文献   

14.
Fluid adsorption on nonplanar and heterogeneous substrates is studied using a simple interfacial model. For systems with short-ranged forces, we find that, by tuning the local strength of the substrate potential, it is possible to find the exact equilibrium interfacial profile as a functional of the wall shape psi x. The tuning of the local substrate potential takes the form of a gauge condition theta x=+/-psi x, where theta x can be interpreted as a local effective contact angle. For wedgelike geometries with asymptotic tilt angle alpha, the midpoint interfacial height and roughness satisfy the same covariance relations previously found for simple linear wedges. For troughlike geometries satisfying the gauge condition, covariance is also found for the two-point correlation function. Predictions for more microscopic Landau and Ising models are also discussed.  相似文献   

15.
The complex morphologies of liquids on topographically structured substrates are exploited for liquid actuation in open microchannels. The liquid is either confined in prefabricated grooves, thus forming elongated filaments, or gathers in macroscopic drops without invading the grooves, depending on conditions. Using the electrowetting effect, we can reversibly switch between these two states. The length of the filaments is sensitive to the ionic content of the liquid and can be described quantitatively with an electrical model considering the voltage drop along the groove.  相似文献   

16.
Self-assembly is the fundamental principle, which can occur spontaneously in nature. Through billions of years of evolution, nature has learned what is optimal. The optimized biological solution provides some inspiration for scientists and engineers. In the past decade, under the multi-disciplinary collaboration, bio-inspired special wetting surfaces have attracted much attention for both fundamental research and practical applications. In this review, we focus on recent research progress in bio-inspired special wetting surfaces via self-assembly, such as low adhesive superhydrophobic surfaces, high adhesive superhydrophobic surfaces, superamphiphobic surfaces, and stimuli-responsive surfaces. The challenges and perspectives of this research field in the future are also briefly addressed.  相似文献   

17.
We show experimentally and analytically that for single-valued, isotropic, homogeneous, randomly rough surfaces consisting of bumps randomly protruding over a continuous background, superhydrophobicity is related to the power spectral density of the surface height, which can be derived from microscopy measurements. More precisely, superhydrophobicity correlates with the third moment of the power spectral density, which is directly related to the notion of Wenzel roughness (i.e., the ratio between the real area of the surface and its projected area). In addition, we explain why randomly rough surfaces with identical root-mean-square roughness values may behave differently with respect to water repellence and why roughness components with wavelength larger than 10 μm are not likely to be of importance or, stated otherwise, why superhydrophobicity often requires a contribution from submicrometer-scale components such as nanoparticles. The analysis developed here also shows that the simple thermodynamic arguments relating superhydrophobicity to an increase in the sample area are valid for this type of surface, and we hope that it will help researchers to fabricate efficient superhydrophobic surfaces based on the rational design of their power spectral density.  相似文献   

18.
Patterned surfaces with microwrinkled surface structures were prepared by thermally evaporating thin aluminum (10-300 nm thick) (Al) layers onto thick prestrained layers of a silicone elastomer and subsequently releasing the strain. This resulted in the formation of sinusoidal periodic surface wrinkles with characteristic wavelengths in the 3-42 μm range and amplitudes as large as 3.6 ± 0.4 μm. The Al thickness dependence of the wrinkle wavelengths and amplitudes was determined for different values of the applied prestrain and compared to a recent large-amplitude deflection theory of wrinkle formation. The results were found to be in good agreement with theory. Samples with spatial gradients in wrinkle wavelength and amplitude were also produced by applying mechanical strain gradients to the silicone elastomer layers prior to deposition of the Al capping layers. Sessile water droplets that were placed on these surfaces were found to have contact angles that were dependent upon their position. Moreover, these samples were shown to direct the motion of small water droplets when the substrates were vibrated.  相似文献   

19.
The wetting behavior of fluorocarbon materials has been studied with the aim of assessing the influence of the surface chemical composition and surface roughness on the water advancing and receding contact angles. Diamond like carbon and two fluorocarbon materials with different fluorine content have been prepared by plasma enhanced chemical vapor deposition and characterized by X-ray photoemission, Raman and FT-IR spectroscopies. Very rough surfaces have been obtained by deposition of thin films of these materials on polymer substrates previously subjected to plasma etching to increase their roughness. A direct correlation has been found between roughness and water contact angles while a superhydrophobic behavior (i.e., water contact angles higher than 150° and relatively low adhesion energy) was found for the films with the highest fluorine content deposited on very rough substrates. A critical evaluation of the methods currently used to assess the roughness of these surfaces by atomic force microscopy (AFM) has evidenced that calculated RMS roughness values and actual surface areas are quite dependent on both the scale of observation and image resolution. A critical discussion is carried out about the application of the Wenzel model to account for the wetting behavior of this type of surfaces.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号