首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Second-order cone programming   总被引:23,自引:0,他引:23  
  相似文献   

2.
We discuss first and second order optimality conditions for nonlinear second-order cone programming problems, and their relation with semidefinite programming problems. For doing this we extend in an abstract setting the notion of optimal partition. Then we state a characterization of strong regularity in terms of second order optimality conditions. This is the first time such a characterization is given for a nonpolyhedral conic problem. Dedicated to R.T. Rockafellar on the occasion of his 70th birthday. Partially supported by Ecos-Conicyt C00E05.  相似文献   

3.
Second-order cone programs are a class of convex optimization problems. We refer to them as deterministic second-order cone programs (DSCOPs) since data defining them are deterministic. In DSOCPs we minimize a linear objective function over the intersection of an affine set and a product of second-order (Lorentz) cones. Stochastic programs have been studied since 1950s as a tool for handling uncertainty in data defining classes of optimization problems such as linear and quadratic programs. Stochastic second-order cone programs (SSOCPs) with recourse is a class of optimization problems that defined to handle uncertainty in data defining DSOCPs. In this paper we describe four application models leading to SSOCPs.  相似文献   

4.
《Optimization》2012,61(8):965-979
We extend the smoothing function proposed by Huang, Han and Chen [Journal of Optimization Theory and Applications, 117 (2003), pp. 39–68] for the non-linear complementarity problems to the second-order cone programming (SOCP). Based on this smoothing function, a non-interior continuation method is presented for solving the SOCP. The proposed algorithm solves only one linear system of equations and performs only one line search at each iteration. It is shown that our algorithm is globally and locally superlinearly convergent in absence of strict complementarity at the optimal solution. Numerical results indicate the effectiveness of the algorithm.  相似文献   

5.
Based on the differential properties of the smoothing metric projector onto the second-order cone,we prove that,for a locally optimal solution to a nonlinear second-order cone programming problem,the nonsingularity of the Clarke's generalized Jacobian of the smoothing Karush-Kuhn-Tucker system,constructed by the smoothing metric projector,is equivalent to the strong second-order sufficient condition and constraint nondegeneracy,which is in turn equivalent to the strong regularity of the Karush-Kuhn-Tucker p...  相似文献   

6.
A new smoothing function for the second-order cone programming is given by smoothing the symmetric perturbed Fischer–Burmeister function. Based on this new function, a one-step smoothing Newton method is presented for solving the second-order cone programming. The proposed algorithm solves only one linear system of equations and performs only one line search at each iteration. This algorithm does not have restrictions regarding its starting point and is Q-quadratically convergent. Numerical results suggest the effectiveness of our algorithm.  相似文献   

7.
In this paper, we consider using the neural networks to efficiently solve the second-order cone constrained variational inequality (SOCCVI) problem. More specifically, two kinds of neural networks are proposed to deal with the Karush-Kuhn-Tucker (KKT) conditions of the SOCCVI problem. The first neural network uses the Fischer-Burmeister (FB) function to achieve an unconstrained minimization which is a merit function of the Karush-Kuhn-Tucker equation. We show that the merit function is a Lyapunov function and this neural network is asymptotically stable. The second neural network is introduced for solving a projection formulation whose solutions coincide with the KKT triples of SOCCVI problem. Its Lyapunov stability and global convergence are proved under some conditions. Simulations are provided to show effectiveness of the proposed neural networks.  相似文献   

8.
In aggregation for data envelopment analysis (DEA), a jointly measured efficiency score among inputs and outputs is desirable in performance analysis. A separate treatment between output-oriented efficiency and input-oriented efficiency is often needed in the conventional radial DEA models. Such radial measures usually need to measure both that a current performance attains an efficiency frontier and that all the slacks are zero on optimality. In the analytical framework of the radial measure, Russell measure is proposed to deal with such a difficulty. A major difficulty associated with the Russell measure is that it is modeled by a nonlinear programming formulation. Hence, a conventional linear programming algorithm, usually applied for DEA, cannot solve the Russell measure. This study newly proposes a reformulation of the Russell measure by a second-order cone programming (SOCP) model and applies the primal–dual interior point algorithm to solve the Russell measure.  相似文献   

9.
Second-order cone programming (SOCP) problems are typically solved by interior point methods. As in linear programming (LP), interior point methods can, in theory, solve SOCPs in polynomial time and can, in practice, exploit sparsity in the problem data. Specifically, when cones of large dimension are present, the density that results in the normal equations that are solved at each iteration can be remedied in a manner similar to the treatment of dense columns in an LP. Here we propose a product-form Cholesky factorization (PFCF) approach, and show that it is more numerically stable than the alternative Sherman-Morrison-Woodbury approach. We derive several PFCF variants and compare their theoretical perfomance. Finally, we prove that the elements of L in the Cholesky factorizations LDLT that arise in interior point methods for SOCP are uniformly bounded as the duality gap tends to zero as long as the iterates remain is some conic neighborhood of the cental path.Mathematics Subject Classification (1991): 90C25, 90C51, 15A23Research supported in part by NSF Grants CDA 97-26385, DMS 01-04282, ONR Grant N000140310514 and DOE Grant GE-FG01-92ER-25126  相似文献   

10.
A new smoothing function of the well-known Fischer–Burmeister function is given. Based on this new function, a smoothing Newton-type method is proposed for solving second-order cone programming. At each iteration, the proposed algorithm solves only one system of linear equations and performs only one line search. This algorithm can start from an arbitrary point and it is Q-quadratically convergent under a mild assumption. Numerical results demonstrate the effectiveness of the algorithm.  相似文献   

11.
It is common in forest tree breeding that selection of populations must consider conservation of genetic diversity, while at the same time attempting to maximize response to selection. To optimize selection in these situations, the constraint on genetic diversity can be mathematically described with the numerator relationship matrix as a quadratic constraint. Pong-Wong and Woolliams formulated the optimal selection problem using semidefinite programming (SDP). Their SDP approach gave an accurate optimal value, but required rather long computation time. In this paper, we propose an second-order cone programming (SOCP) approach to reduce the heavy computation cost. First, we demonstrate that a simple SOCP formulation achieves the same numerical solution as the SDP approach. A simple SOCP formulation is, however, not much more efficient compared to the SDP approach, so we focused on the sparsity structure of the numerator relationship matrix, and we develop a more efficient SOCP formulation using Henderson’s algorithm. Numerical results show that the proposed formulation, which we call a compact SOCP, greatly reduced computation time. In a case study, an optimal selection problem that demanded 39,200 s under the SDP approach was solved in less than 2 s by the compact SOCP formulation. The proposed approach is now available as a part of the software package OPSEL.  相似文献   

12.
In this paper, we present a smoothing Newton method for solving the second-order cone programming (SOCP) based on the Chen–Harker–Kanzow–Smale (CHKS) smoothing function. Our smoothing method reformulates SOCP as a nonlinear system of equations and then applies Newton’s method to the system. The proposed method solves only one linear system of equations and performs only one line search at each iteration. It is shown that the method is globally and locally sub-quadratically convergent under a nonsingularity assumption. Numerical results suggest that the method is promising.  相似文献   

13.
Based on the Chen-Harker-Kanzow-Smale (CHKS) smoothing function, a non-interior continuation method is presented for solving the second-order cone programming (SOCP). Our algorithm reformulates the SOCP as a nonlinear system of equations and then applies Newton’s method to the perturbation of this system. The proposed algorithm does not have restrictions regarding its starting point and solves at most one linear system of equations at each iteration. Under suitable assumptions, the algorithm is shown to be globally and locally quadratically convergent. Some numerical results are also included which indicate that our algorithm is promising and comparable to interior-point methods.  相似文献   

14.
We make a unified analysis of interior proximal methods of solving convex second-order cone programming problems. These methods use a proximal distance with respect to second-order cones which can be produced with an appropriate closed proper univariate function in three ways. Under some mild conditions, the sequence generated is bounded with each limit point being a solution, and global rates of convergence estimates are obtained in terms of objective values. A class of regularized proximal distances is also constructed which can guarantee the global convergence of the sequence to an optimal solution. These results are illustrated with some examples. In addition, we also study the central paths associated with these distance-like functions, and for the linear SOCP we discuss their relations with the sequence generated by the interior proximal methods. From this, we obtain improved convergence results for the sequence for the interior proximal methods using a proximal distance continuous at the boundary of second-order cones.  相似文献   

15.
16.
基于非光滑向量值最小函数的一个新光滑函数, 建立了二阶锥规划一个超线性收敛的非内部连续化算法. 该算法的特点如下: 首先, 初始点任意; 其次, 每次迭代只需求解一个线性方程组即可得到搜索方向; 最后, 在无严格互补假设下, 获得算法的全局收敛性、强收敛性和超线性收敛性. 数值结果表明算法是有效的.  相似文献   

17.
《Optimization》2012,61(12):2291-2323
ABSTRACT

We study and solve the two-stage stochastic extended second-order cone programming problem. We show that the barrier recourse functions and the composite barrier functions for this optimization problem are self-concordant families with respect to barrier parameters. These results are used to develop primal decomposition-based interior-point algorithms. The worst case iteration complexity of the developed algorithms is shown to be the same as that for the short- and long-step primal interior algorithms applied to the extensive formulation of our problem.  相似文献   

18.
19.
We describe a challenging class of large mixed-integer second-order cone programming models which arise in computing the maximum price that a buyer is willing to disburse to acquire an American contingent claim in an incomplete financial market with no arbitrage opportunity. Taking the viewpoint of an investor who is willing to allow a controlled amount of risk by replacing the classical no-arbitrage assumption with a “no good-deal assumption” defined using an arbitrage-adjusted Sharpe ratio criterion we formulate the problem of computing the pricing and hedging of an American option in a financial market described by a multi-period, discrete-time, finite-state scenario tree as a large-scale mixed-integer conic optimization problem. We report computational results with off-the-shelf mixed-integer conic optimization software.  相似文献   

20.
The smoothing-type algorithms, which are in general designed based on some monotone line search, have been successfully applied to solve the second-order cone programming (denoted by SOCP). In this paper, we propose a nonmonotone smoothing Newton algorithm for solving the SOCP. Under suitable assumptions, we show that the proposed algorithm is globally and locally quadratically convergent. To compare with the existing smoothing-type algorithms for the SOCP, our algorithm has the following special properties: (i) it is based on a new smoothing function of the vector-valued natural residual function; (ii) it uses a nonmonotone line search scheme which contains the usual monotone line search as a special case. Preliminary numerical results demonstrate that the smoothing-type algorithm using the nonmonotone line search is promising for solving the SOCP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号