首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 255 毫秒
1.
《Physics letters. A》1996,223(4):267-272
The effects of a magnetic field on a modulated phase are studied. A modulated phase is found to have two critical fields H1 and H2. For a large enough magnetic field, H1 and H2 can be approximated by a linear law. As a result, the minimum magnetic field needed to destroy a modulated phase is a constant. The minimum magnetic field also greatly depends on the order of a commensurate phase. A very high order commensurate phase and an incommensurate phase cannot survive a magnetic field. The behaviour of a magnetoelastic chain in a magnetic field can be described by a harmless devil's staircase. The inverse temperature is found to play a role similar to that of a special magnetic field. The deeper physics underlying these new phenomena is the breaking of the left-right symmetry of a phase diagram. As a result a controllable path to a modulated phase is found.  相似文献   

2.
It has been shown that, apart from classical vacancies formed as a result of the thermal fluctuations, a crystal can contain so-called nonclassical vacancies of nonfluctuation nature. The latter vacancies appear when the temperature exceeds a critical value T C . The factor responsible for their formation is a mechanical instability of an ideal crystal. The temperature T C is a second-order phase transition point. The vacancies formed as a result of this phase transition are joined together into small clusters with sizes of the order of several atoms. The above transition makes a substantial contribution to the premelting process observed experimentally.  相似文献   

3.
This paper presents the design, fabrication, and performance of a compact high temperature superconducting duplexer at VHF-band. The duplexer consists of a T-junction and two four-pole filters with an ultra-narrow bandwidth of 400 kHz at 216 MHz and 220 MHz, respectively. By using gap-coupled feedlines in the filter design procedure, the duplexer is constructed by connecting the two filters using a T-junction with short-length branches. The two filters are fabricated on separate substrates and are carefully packaged to achieve a high isolation between the duplexer channels. The duplexer has a compact size of 41.6 mm × 28 mm. The measured results at 73 K show a high performance. The return loss is −17 dB, the insertion losses of both channels are less than 0.16 dB, and the out-of-band rejections are higher than 60 dB. The isolation between the two channels is better than 76 dB.  相似文献   

4.
The magnetic properties of 1.5 at% Fe-doped NiO bulk samples were investigated. The samples were prepared by sintering the corresponding precursor in air at temperatures between 400 and 800 °C for 6 h. The synthesis was by a chemical co-precipitation and post-thermal decomposition method. In order to allow a comparison, a NiO/0.76 at% NiFe2O4 mixture was also prepared. The X-ray diffraction pattern shows that the samples that were sintered at 400 and 600 °C remain single phase. As the sintering temperature increased to 800 °C, however, the sample becomes a mixture of NiO and NiFe2O4 ferrite phases. The samples were investigated by measuring their magnetization as a function of magnetic field. The samples sintered between 400 and 800 °C and the one mixed directly with NiFe2O4 nanoparticles show a coercivity value of Hc≈200, 325, 350 and 110 Oe, respectively. The magnetic properties of the samples depend strongly on the sintering temperature. Simultaneously, the field-cooling hysteresis loop shift also observed after cooling the sample sintered at 600 °C to low temperature suggests the possibility of the existence of a ferromagnetic/antiferromagnetic exchange coupling.  相似文献   

5.
This paper presents a novel method used to manufacture stacks of multiple matching layers for 15 MHz piezoelectric ultrasonic transducers, using fabrication technology derived from the MEMS industry. The acoustic matching layers were made on a silicon wafer substrate using micromachining techniques, i.e., lithography and etch, to design silicon and polymer layers with the desired acoustic properties. Two matching layer configurations were tested: a double layer structure consisting of a silicon–polymer composite and polymer and a triple layer structure consisting of silicon, composite, and polymer. The composite is a biphase material of silicon and polymer in 2-2 connectivity. The matching layers were manufactured by anisotropic wet etch of a (1 1 0)-oriented Silicon-on-Insulator wafer. The wafer was etched by KOH 40 wt%, to form 83 μm deep and 4.5 mm long trenches that were subsequently filled with Spurr’s epoxy, which has acoustic impedance 2.4 MRayl. This resulted in a stack of three layers: The silicon substrate, a silicon–polymer composite intermediate layer, and a polymer layer on the top. The stacks were bonded to PZT disks to form acoustic transducers and the acoustic performance of the fabricated transducers was tested in a pulse-echo setup, where center frequency, −6 dB relative bandwidth and insertion loss were measured. The transducer with two matching layers was measured to have a relative bandwidth of 70%, two-way insertion loss 18.4 dB and pulse length 196 ns. The transducers with three matching layers had fractional bandwidths from 90% to 93%, two-way insertion loss ranging from 18.3 to 25.4 dB, and pulse lengths 326 and 446 ns. The long pulse lengths of the transducers with three matching layers were attributed to ripple in the passband.  相似文献   

6.
The photoelectron spectrum of tungsten metal using Al Kα X-rays has been studied as a function of a tungsten oxide layer on the surface. The photoelectron lines arising from the 4f shell of tungsten metal are clearly separated in energy from those coming from WO3. The ratio of the intensities of these two sets of lines were measured for a series of metal samples which were anodized to a determined level of tungsten oxide. The data were shown to be consistent with a uniform deposition of oxide film. The escape depth, or thickness from which half the photoelectron intensity is derived, was found for a 1450 eV photoelectron to be 8.9 Å and 18.3 Å for W and WO3, respectively.  相似文献   

7.
The relationship is established between the Fedosov deformation quantization of a general symplectic manifold and the BFV-BRST quantization of constrained dynamical systems. The original symplectic manifold ℳ is presented as a second class constrained surface in the fibre bundle ?* ρℳ which is a certain modification of a usual cotangent bundle equipped with a natural symplectic structure. The second class system is converted into the first class one by continuation of the constraints into the extended manifold, being a direct sum of ?* ρℳ and the tangent bundle Tℳ. This extended manifold is equipped with a nontrivial Poisson bracket which naturally involves two basic ingredients of Fedosov geometry: the symplectic structure and the symplectic connection. The constructed first class constrained theory, being equivalent to the original symplectic manifold, is quantized through the BFV-BRST procedure. The existence theorem is proven for the quantum BRST charge and the quantum BRST invariant observables. The adjoint action of the quantum BRST charge is identified with the Abelian Fedosov connection while any observable, being proven to be a unique BRST invariant continuation for the values defined in the original symplectic manifold, is identified with the Fedosov flat section of the Weyl bundle. The Fedosov fibrewise star multiplication is thus recognized as a conventional product of the quantum BRST invariant observables. Received: 28 April 2000 / Accepted: 6 December 2000  相似文献   

8.
Herein is a report of a study on a Cd1−xZnxS thin film grown on an ITO substrate using a chemical bath deposition technique. The as-deposited films were annealed in air at 400 °C for 30 min. The composition, surface morphology and structural properties of the as-deposited and annealed Cd1−xZnxS thin films were studied using EDX, SEM and X-ray diffraction techniques. The annealed films have been observed to possess a crystalline nature with a hexagonal structure. The optical absorption spectra were recorded within the range of 350-800 nm. The band gap of the as-deposited thin films varied from 2.46 to 2.62 eV, whereas in the annealed film these varied from 2.42 to 2.59 eV. The decreased band gap of the films after annealing was due to the improved crystalline nature of the material.  相似文献   

9.
A new method was developed using AFM images of a fiber surface to regenerate the surface roughness in 3D geometry, such as the cylindrical shape of a “model” fiber. The Langevin equation was used to derive the fluctuations of a carbon fiber surface image. The equation contains two quantities, D(1) (h) and D(2) (h) which in physics represent drift and diffusion coefficients. Knowing this coefficient and adding a proper noise function, a similar surface of larger dimension with the same statistical properties of the initial data was created. The generated surface was mapped into cylindrical coordinates, then a mesh generated. The resulting reconstructed surface, input over the geometry of a cylindrical shape, can be implemented for finite element analysis of a single fiber surrounded by matrix and generalized to a many fiber model.  相似文献   

10.
The design, construction and operation of an ultraviolet photoelectron spectrometer are reported. It has a readily accessible target chamber and a versatile inlet system, which can cope with a rapid throughput of relatively involatile samples. The electrons emerging from the target chamber pass through two slits which are subject to a variable electric field, into a magnetic field. Thus the spectrum is linear. The resolution based on argon 2P32 peak is 18 meV. The instrument is easy to make and operate. It is proving adequate for many chemical and analytical purposes and may be coupled directly to a gas-liquid chromatograph. Problems encountered during construction and optimization are discussed.  相似文献   

11.
In this paper we study the dynamics of the two-dimensional XY model with single-ion anisotropy, and spin S = 1, in the large D phase, and low temperatures, using the bond operator formalism. The in-plane structure factor is a delta function. The out of plane shows a three peak structure, which merges in a single peak at the Brillouin zone boundary. We analyze also spin currents generated by a magnetic field gradient. The spin conductivity is calculated, at finite temperature, using the Kubo formula. The model shows unconventional ballistic spin transport at finite temperature. The computed spin conductivity exhibits a nonzero Drude weight at finite temperature. For ω< 2m, where m is the energy gap, the spin conductivity is described solely by the Drude weight. There is a regular contribution to the spin conductivity for ω> 2m, which persist in the zero temperature limit. The conductivity at the critical point, and for small frequencies, is (gμB)2/ħ times a universal scaling function of ħω/kB T.  相似文献   

12.
Transesterification of a phosphodiester bond of RNA models has been studied in various buffer solutions, under neutral and slightly alkaline conditions in H2O and D2O. The results show that imidazole is the only buffer system where a clear buffer catalysis on the cleavage of a phosphodiester bond is observed. The rate enhancement in sulphonic acid buffers is smaller, and a sulphonate base, particularly, is inactive as a catalyst. The rate‐enhancing effect of imidazole is, however, catalytic, and the catalytic inactivity of sulphonate buffers can be attributed to their structure and/or charge. The catalysis by imidazole is a complex system which, in addition to first‐order reactions, involves a process that shows a second‐order dependence in imidazole concentration. The latter reaction becomes significant in acidic imidazole buffers (pH < pKa), as the buffer concentration increases. The kinetic solvent deuterium isotope effect kH/kD, referring to first‐order catalysis by imidazole base, is 2.3 ± 0.3. That referring to second‐order catalysis is most probably much larger, but an accurate value could not be obtained. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
Li-N dual-doped p-type ZnO (ZnO:(Li,N)) thin films have been prepared by pulsed laser deposition. The introduction of Li and N was confirmed by secondary ion mass spectrometry measurements. The structural, electrical, and optical properties as a function of growth temperature were investigated in detail. The lowest room-temperature resistivity of 3.99 Ω cm was achieved at the optimal temperature of 450 °C, with a Hall mobility of 0.17 cm2/V s and hole concentration of 9.12 × 1018 cm−3. The ZnO:(Li,N) films exhibited good crystal quality with a complete c-axis orientation, a high transmittance (about 90%) in the visible region, and a predominant UV emission at room temperature. The two-layer-structure p-ZnO:(Li,N)/n-ZnO homojunctions were fabricated on a sapphire substrate. The current-voltage characteristics exhibited the rectifying behavior of a typical p-n junction.  相似文献   

14.
An experimental study is conducted on the corona characteristics under lightning impulses. The charge-voltage characteristics, i. e. the Q-U curves, are measured in a corona cage. The impulse waveshapes are varied to investigate their influence on the Q-U curves. Meanwhile, a corona model is proposed to compute the Q-U curves. The ionized zone is simplified as a cylindrosymmetric geometry and a one-dimensional subdivision is made in the radial direction. The Q-U curves can be given by performing an efficient computational procedure. The computed results are compared with the measured ones to check the validity of the model.  相似文献   

15.
The results of nonempirical calculation of energies of three polytypes (cubic, two-layer hexagonal, and six-layer hexagonal) are given for RbMnX3 (X = F, Cl, Br) crystals. The calculation is performed using an ionic crystal model with regard for the deformability and the dipole and quadrupole polarizabilities of ions. The behavior of these crystals under the action of hydrostatic pressure is studied. It is demonstrated that, at normal pressure, the RbMnCl3 and RbMnBr3 crystals have a six-layer hexagonal structure. At pressures above 11 kbar, RbMnCl3 passes to a phase with a cubic structure; RbMnBr3 at pressures above 90 kbar passes to a phase with a two-layer hexagonal structure. The RbMnF3 crystal under normal conditions has a cubic structure and experiences no phase transformations under the effect of pressure. The obtained results are in satisfactory agreement with the known experimental data.  相似文献   

16.
A theoretical approach is developed that describes the formation of a thin-film of AB-compound layer under the influence of radiation-induced vacancy. The AB-compound layer is formed as a result of a chemical reaction between the atomic species of A and B immiscible layers. The two layers are irradiated with a beam of energetic particles and this process leads to several vacant lattice sites creation in both layers due to the displacement of lattice atoms by irradiating particles. A- and B-atoms diffuse via these lattice sites by means of a vacancy mechanism in considerable amount to reaction interfaces A/AB and AB/B. The reaction interfaces increase in thickness as a result of chemical transformation between the diffusing species and surface atoms (near both layers). The compound layer formation occurs in two stages. The first stage begins as an interfacial reaction controlled process, and the second as a diffusion controlled process. The critical thickness and time are determined at a transition point between the two stages. The influence of radiation-induced vacancy on layer thickness, speed of growth, and reaction rate is investigated under irradiation within the framework of the model presented here. The result obtained shows that the layer thickness, speed of growth, and reaction rate increase strongly as the defect generation rate rises in the irradiated layers. It also shows the feasibility of producing a compound layer (especially in near-noble metal silicide considered in this study) at a temperature below their normal formation temperature under the influence of radiation.  相似文献   

17.
This paper describes the preparation and characterization of a high-voltage lithium-ion battery based on Sn-decorated reduced graphene oxide and LiNi0.5Mn1.5O4 as the anode and cathode active materials, respectively. The Sn-decorated reduced graphene oxide is prepared using a microwave-assisted hydrothermal synthesis method followed by reduction at high temperature of a mixture of (C6H5)2SnCl2 and graphene oxide. The so-obtained anode material is characterized by thermogravimetric analysis, X-ray diffraction, scanning electron microscopy, and electron diffraction spectroscopy. The LiNi0.5Mn1.5O4 is a commercially available product. The two materials are used to prepare composite electrodes, and their electrochemical properties are investigated by galvanostatic charge/discharge cycles at various current densities in lithium cells. The electrodes are then used to assemble a high-voltage lithium-ion cell, and the cell is tested to evaluate its performance as a function of discharge rate and cycle number.  相似文献   

18.
The microstructure of a composite containing a quasicrystal phase, i.e. so-called crystal–quasicrystal (CQ) composite, was studied. The CQ composite was obtained by the Bridgman method via solidification of Al61Cu27Fe12 alloy (numbers indicate at%). The process was conducted at a pull out rate of v = 0.07 mm/min. The average temperature gradient in the heating zone was 43 K/cm. The composite matrix consisted of cubic β phase Al(Fe, Cu), with reinforcement of λ-phase rod-shaped fibres surrounded by a quasicrystal icosahedral ψ phase, which also existed in the fibre core. The fibres were rhomboidal in cross-section. The composite was studied using X-ray and electron diffraction, light-optical and scanning electron microscopy (SEM), X-ray topography and Laue diffraction.  相似文献   

19.
《Current Applied Physics》2015,15(9):1047-1053
This paper presents an optimum design of a substrate-integrated cavity-type antenna for use in the terahertz frequency range. The antenna was designed with a frequency-selective surface (FSS) and a planar feeding structure that are both patterned on a high-permittivity gallium-arsenide substrate. The FSS, printed on the bottom side of the substrate, is made of a circular hole array that acts as a partially reflecting mirror. Meanwhile, the planar feeding structure, printed on the top side of the substrate, is a center-fed, open-ended slotline whose ground plane acts as a perfect reflective mirror; thus, it forms a Fabry–Perot resonator. The optimized antenna produced a maximum boresight gain of 14.3 dBi, a radiation efficiency of 62%, and side-lobe levels of −15.1 dB and −15.0 dB for the E- and H-planes, respectively, at a resonance frequency of 320 GHz. The proposed design exhibits compactness, planarity, and light weight compared with the substrate lens-coupled antenna design.  相似文献   

20.
The fragmentation of a hot nuclear system is studied in a statistical model. The partitions of the system are calculated by means of a Monte Carlo technique. The resulting mass spectra, multiplicity distributions, average values of temperature, entropy, heat capacity and break-up density are presented and discussed. It is found that the fragmentation process begins rather suddenly at a crack temperature T1?5–6 MeV. The occurrence at a higher temperature of a transition to a gaseous-like phase in finite systems is investigated and compared with infinite-matter calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号