首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
TiO(2) sensitized by derivatized ruthenium bipyridyl complexes has been intensively investigated as a tool to utilize visible light. This article describes an alternative approach to attaching ruthenium complex sensitizers at the TiO(2)/H(2)O interface, which is a much simpler and more efficient way to produce hydrogen. The surface of TiO(2) particles are simply coated with perfluorosulfonate polymer (cation-exchange resin: Nafion), and then Ru(bpy)(3)(2+) (as a cationic form), whose bipyridyl ligands are not functionalized with carboxylic acid groups, are bound within the Nafion layer through electrostatic attraction. The visible-light-induced production of H(2) on Nf/TiO(2) using simple Ru(bpy)(3)(2+) as a sensitizer is far more efficient than that on Ru(dcbpy)(3)-TiO(2), upon which many sensitized photoelectrochemical conversion systems are based. Effects of various experimental parameters such as pH, concentration of Ru(bpy)(3)(2+), Nafion loading, and the kind of TiO(2) were investigated. Under optimized conditions, the H(2) production rate was about 80 mumol/h, which corresponds to an apparent photonic efficiency of 2.6%. The roles of the Nafion layer on TiO(2) in the sensitized H(2) production are proposed to be twofold: to provide binding sites for cationic sensitizers and to enhance the local activity of protons in the surface region.  相似文献   

2.
Transient anisotropy measurements are reported as a new spectroscopic tool for mechanistic characterization of photoinduced charge-transfer and energy-transfer self-exchange reactions at molecule-semiconductor interfaces. An anisotropic molecular subpopulation was generated by photoselection of randomly oriented Ru(II)-polypyridyl compounds, anchored to mesoscopic nanocrystalline TiO(2) or ZrO(2) thin films, with linearly polarized light. Subsequent characterization of the photoinduced dichromism change by visible absorption and photoluminescence spectroscopies on the nano- to millisecond time scale enabled the direct comparison of competitive processes: excited-state decay vs self-exchange energy transfer, or interfacial charge recombination vs self-exchange hole transfer. Self-exchange energy transfer was found to be many orders-of-magnitude faster than hole transfer at the sensitized TiO(2) interfaces; for [Ru(dtb)(2)(dcb)](PF(6))(2), where dtb is 4,4'-(C(CH(3))(3))(2)-2,2'-bipyridine and dcb is 4,4'-(COOH)(2)-2,2'-bipyridine, anchored to TiO(2), the energy-transfer correlation time was θ(ent) = 3.3 μs while the average hole-transfer correlation time was <θ(h+)> = 110 ms, under identical experimental conditions. Monte Carlo simulations successfully modeled the anisotropy decays associated with lateral energy transfer. These mesoscopic, nanocrystalline TiO(2) thin films developed for regenerative solar cells thus function as active "antennae", harvesting sunlight and transferring energy across their surface. For the dicationic sensitizer, [Ru(dtb)(2)(dcb)](PF(6))(2), anisotropy changes indicative of self-exchange hole transfer were observed only when ions were present in the acetonitrile solution. In contrast, evidence for lateral hole transfer was observed in neat acetonitrile for a neutral sensitizer, cis-Ru(dnb)(dcb)(NCS)(2), where dnb is 4,4'-(CH(3)(CH(2))(8))(2)-2,2'-bipyridine, anchored to TiO(2). The results indicate that mechanistic models of interfacial charge recombination between electrons in TiO(2) and oxidized sensitizers must take into account diffusion of the injected electron and the oxidized sensitizer. The phenomena presented herein represent two means of concentrating potential energy derived from visible light that could be used to funnel energy to molecular catalysts for multiple-charge-transfer reactions, such as the generation of solar fuels.  相似文献   

3.
The paper examines the supramolecular effects at play during photosensitization by carboxylated Ru(II) sensitizers, both by experiment and by modeling. Experimentally, twelve Ru(II) complexes of pyrazolylpyridine and polypyridine ligands, including two benchmark complexes and two new species, were assessed as photosensitizers by measurement of the kinetics of methyl viologen cation radical (MV(*)(+)) generation through an oxidative, photoinduced electron transfer (PET) to methyl viologen (MV(2+)) under continuous irradiation in the presence of a sacrificial reductant. All complexes, luminescent or not, produced measurable amounts of MV(*)(+) in CH(3)CN. The assessment protocol was found to be useful with sensitizers of widely varying excited-state lifetimes (tau) as well as being easier and faster than conventional approaches. The seven sensitizers bearing peripheral COOH groups were found to be significantly more active than their non-carboxylated analogues, which is consistent with ionization of the COOH groups and electrostatic promotion of PET. Only the luminescent complexes were active in aqueous solvents, where tau appears to be the dominant effector. The benefits are exemplified by the singly carboxylated [Ru(H1)(bpy)(2)](2+) (H1 is 1-(4-carboxyphenyl)-3-(2-pyridyl)-4,5,6,7-tetrahydroindazole), a weakly luminescent sensitizer that was less active in aqueous solvents than [Ru(bpy)(3)](2+) (bpy is 2,2'-bipyridine), but which became the better sensitizer in CH(3)CN. Computationally, electrostatic field and dissociation energy calculations demonstrated that even a single peripheral COO(-) substituent suffices to provide supramolecular assistance: it defines a spheric "bubble" of electrostatically attractive space that is sufficiently large to allow the supramolecular preassociation of MV(2+), which provides an entropic advantage to PET that reduces the importance of tau in organic solvent. Calculations also show that the PET is electrostatically favored over its reverse (BET) even with cationic sensitizers because the "bubble" contracts after PET while the bulk medium becomes more repulsive, and favorable cation exchanges can occur to effect post-PET dissociation. Two peripheral COO(-) groups can define a two-point binding site for MV(2+) in an attractive sector of space that contracts to a kidney-shaped "bubble" after PET. This enables unimolecular PET while the reverse reaction remains bimolecular. The resultant benefits are illustrated with [Ru(Na1)(2)(bpy)](2+), a very weakly luminescent sensitizer that was totally inactive in H(2)O but appreciably active in CH(3)CN, despite the need to displace Na(+) in order to derive any electrostatic benefit. The Marcus free energies of activation for PET and BET corroborate the benefits of carboxylation, solvent, and other factors and correlated with the experimental rate constants.  相似文献   

4.
The tetraruthenium polyoxometalate [Ru(4)(μ-O)(4)(μ-OH)(2)(H(2)O)(4)(γ-SiW(10)O(36))(2)](10-) (1) behaves as a very efficient water oxidation catalyst in photocatalytic cycles using Ru(bpy)(3)(2+) as sensitizer and persulfate as sacrificial oxidant. Two interrelated issues relevant to this behavior have been examined in detail: (i) the effects of ion pairing between the polyanionic catalyst and the cationic Ru(bpy)(3)(2+) sensitizer, and (ii) the kinetics of hole transfer from the oxidized sensitizer to the catalyst. Complementary charge interactions in aqueous solution leads to an efficient static quenching of the Ru(bpy)(3)(2+) excited state. The quenching takes place in ion-paired species with an average 1:Ru(bpy)(3)(2+) stoichiometry of 1:4. It occurs by very fast (ca. 2 ps) electron transfer from the excited photosensitizer to the catalyst followed by fast (15-150 ps) charge recombination (reversible oxidative quenching mechanism). This process competes appreciably with the primary photoreaction of the excited sensitizer with the sacrificial oxidant, even in high ionic strength media. The Ru(bpy)(3)(3+) generated by photoreaction of the excited sensitizer with the sacrificial oxidant undergoes primary bimolecular hole scavenging by 1 at a remarkably high rate (3.6 ± 0.1 × 10(9) M(-1) s(-1)), emphasizing the kinetic advantages of this molecular species over, e.g., colloidal oxide particles as water oxidation catalysts. The kinetics of the subsequent steps and final oxygen evolution process involved in the full photocatalytic cycle are not known in detail. An indirect indication that all these processes are relatively fast, however, is provided by the flash photolysis experiments, where a single molecule of 1 is shown to undergo, in 40 ms, ca. 45 turnovers in Ru(bpy)(3)(3+) reduction. With the assumption that one molecule of oxygen released after four hole-scavenging events, this translates into a very high average turnover frequency (280 s(-1)) for oxygen production.  相似文献   

5.
Qian Wei 《Tetrahedron》2004,60(38):8497-8508
Three tripodal Ru(II)-polypyridyl complexes have been synthesized as models to study long-range electron transfer in TiO2 semiconductor nanoparticles thin films, in particular to study the effect of the conjugation of the bridge containing the Ru complex and for distance dependence studies. The tripodal sensitizers, which are 1,3,5,7-tetraphenyladamantane derivatives having three COOMe anchoring groups and one rigid-rod bridge substituted with a Ru(II) complex, are the longest prepared to date (Ru-to-footprint distance ∼24 Å). Two have a rigid-rod bridge made of two p-ethynylphenylene units (Ph-E)2 capped with a 4-2,2′-bipyridyl (bpy) ligand or a 5-1,10-phenanthrolinyl (phen) ligand for the Ru complex. The third tripod, which contains a bpy ligand for the Ru complex, has one bicyclo[2.2.2]octylene (Bco) unit in place of a p-phenylene (Ph) unit and is the first example of a tripodal sensitizer with a non-conjugated bridge.  相似文献   

6.
The complexes [Ru(tpy)(bpy)(dmso)](OSO(2)CF(3))(2) and trans-[Ru(tpy)(pic)(dmso)](PF(6)) (tpy is 2,2':6',2' '-terpyridine, bpy is 2,2'-bipyridine, pic is 2-pyridinecarboxylate, and dmso is dimethyl sulfoxide) were investigated by picosecond transient absorption spectroscopy in order to monitor excited-state intramolecular S-->O isomerization of the bound dmso ligand. For [Ru(tpy)(bpy)(dmso)](2+), global analysis of the spectra reveals changes that are fit by a biexponential decay with time constants of 2.4 +/- 0.2 and 36 +/- 0.2 ps. The first time constant is assigned to relaxation of the S-bonded (3)MLCT excited state. The second time constant represents both excited-state relaxation to ground state and excited-state isomerization to form O-[Ru(tpy)(bpy)(dmso)](2+). In conjunction with the S-->O isomerization quantum yield (Phi(S)(-->)(O) = 0.024), isomerization of [Ru(tpy)(bpy)(dmso)](2+) occurs with a time constant of 1.5 ns. For trans-[Ru(tpy)(pic)(dmso)](+), global analysis of the transient spectra reveals time constants of 3.6 +/- 0.2 and 118 +/- 2 ps associated with these two processes. In conjunction with the S-->O isomerization quantum yield (Phi(S)(-->)(O) = 0.25), isomerization of trans-[Ru(tpy)(pic)(dmso)](+) occurs with a time constant of 480 ps. In both cases, the thermally relaxed excited states are assigned as terpyridine-localized (3)MLCT states. Electronic state diagrams are compiled employing these data as well as electrochemical, absorption, and emission data to describe the reactivity of these complexes. The data illustrate that rapid bond-breaking and bond-making reactions can occur from (3)MLCT excited states formed from visible light irradiation.  相似文献   

7.
Rates of reduction of Os(III), Ru(III), and Re(I) by Cu(I) in His83-modified Pseudomonas aeruginosa azurins (M-Cu distance approximately 17 A) have been measured in single crystals, where protein conformation and surface solvation are precisely defined by high-resolution X-ray structure determinations: 1.7(8) x 10(6) s(-1) (298 K), 1.8(8) x 10(6) s(-1) (140 K), [Ru(bpy)2(im)(3+)-]; 3.0(15) x 10(6) s(-1) (298 K), [Ru(tpy)(bpy)(3+)-]; 3.0(15) x 10(6) s(-1) (298 K), [Ru(tpy)(phen)(3+)-]; 9.0(50) x 10(2) s(-1) (298 K), [Os(bpy)2(im)(3+)-]; 4.4(20) x 10(6) s(-1) (298 K), [Re(CO)3(phen)(+)] (bpy = 2,2'-bipyridine; im = imidazole; tpy = 2,2':6',2' '-terpyridine; phen = 1,10-phenanthroline). The time constants for electron tunneling in crystals are roughly the same as those measured in solution, indicating very similar protein structures in the two states. High-resolution structures of the oxidized (1.5 A) and reduced (1.4 A) states of Ru(II)(tpy)(phen)(His83)Az establish that very small changes in copper coordination accompany reduction but reveal a shorter axial interaction between copper and the Gly45 peptide carbonyl oxygen [2.6 A for Cu(II)] than had been recognized previously. Although Ru(bpy)2(im)(His83)Az is less solvated in the crystal, the reorganization energy for Cu(I) --> Ru(III) electron transfer falls in the range (0.6-0.8 eV) determined experimentally for the reaction in solution. Our work suggests that outer-sphere protein reorganization is the dominant activation component required for electron tunneling.  相似文献   

8.
Nanocrystalline (anatase), mesoporous TiO2 thin films were functionalized with [Ru(bpy)2(deebq)](PF6)2, [Ru(bq)2(deeb)](PF6)2, [Ru(deebq)2(bpy)](PF6)2, [Ru(bpy)(deebq)(NCS)2], or [Os(bpy)2(deebq)](PF6)2, where bpy is 2,2'-bipyridine, bq is 2,2'-biquinoline, and deeb and deebq are 4,4'-diethylester derivatives. These compounds bind to the nanocrystalline TiO2 films in their carboxylate forms with limiting surface coverages of 8 (+/- 2) x 10(-8) mol/cm2. Electrochemical measurements show that the first reduction of these compounds (-0.70 V vs SCE) occurs prior to TiO2 reduction. Steady state illumination in the presence of the sacrificial electron donor triethylamine leads to the appearance of the reduced sensitizer. The thermally equilibrated metal-to-ligand charge-transfer excited state and the reduced form of these compounds do not inject electrons into TiO2. Nanosecond transient absorption measurements demonstrate the formation of an extremely long-lived charge separated state based on equal concentrations of the reduced and oxidized compounds. The results are consistent with a mechanism of ultrafast excited-state injection into TiO2 followed by interfacial electron transfer to a ground-state compound. The quantum yield for this process was found to increase with excitation energy, a behavior attributed to stronger overlap between the excited sensitizer and the semiconductor acceptor states. For example, the quantum yields for [Os(bpy)2(dcbq)]/TiO2 were phi(417 nm) = 0.18 +/- 0.02, phi(532.5 nm) = 0.08 +/- 0.02, and phi(683 nm) = 0.05 +/- 0.01. Electron transfer to yield ground-state products occurs by lateral intermolecular charge transfer. The driving force for charge recombination was in excess of that stored in the photoluminescent excited state. Chronoabsorption measurements indicate that ligand-based intermolecular electron transfer was an order of magnitude faster than metal-centered intermolecular hole transfer. Charge recombination was quantified with the Kohlrausch-Williams-Watts model.  相似文献   

9.
Metal(III)-polypyridine complexes [M(NN)(3)](3+) (M = Ru or Fe; NN = bipyridine (bpy), phenanthroline (phen), or 4,7-dimethylphenanthroline (Me(2)-phen)) oxidize the nitrosylpentaaquachromium(III) ion, [Cr(aq)NO](2+), with an overall 4:1 stoichiometry, 4 [Ru(bpy)(3)](3+) + [Cr(aq)NO](2+) + 2 H(2)O --> 4 [Ru(bpy)(3)](2+) + [Cr(aq)](3+) + NO(3)(-) + 4 H(+). The kinetics follow a mixed second-order rate law, -d[[M(NN)(3)](3+)]/dt = nk[[M(NN)(3)](3+)][[Cr(aq)NO](2+)], in which k represents the rate constant for the initial one-electron transfer step, and n = 2-4 depending on reaction conditions and relative rates of the first and subsequent steps. With [Cr(aq)NO](2+) in excess, the values of nk are 283 M(-1) s(-1) ([Ru(bpy)(3)](3+)), 7.4 ([Ru(Me(2)-phen)(3)](3+)), and 5.8 ([Fe(phen)(3)](3+)). In the proposed mechanism, the one-electron oxidation of [Cr(aq)NO](2+) releases NO, which is further oxidized to nitrite, k = 1.04x10(6) M(-1) s(-1), 6.17x10(4), and 1.12x10(4) with the three respective oxidants. Further oxidation yields the observed nitrate. The kinetics of the first step show a strong correlation with thermodynamic driving force. Parallels were drawn with oxidative homolysis of a superoxochromium(III) ion, [Cr(aq)OO](2+), to gain insight into relative oxidizability of coordinated NO and O(2), and to address the question of the "oxidation state" of coordinated NO in [Cr(aq)NO](2+).  相似文献   

10.
Three new luminescent and redox-active Ru(II) complexes containing novel dendritic polypyridine ligands have been synthesized, and their absorption spectra, luminescence properties (both at room temperature in fluid solution and at 77 K in rigid matrix), and redox behavior have been investigated. The dendritic ligands are made of 1,10-phenanthroline coordinating subunits and of carbazole groups as branching sites. The first and second generation species of this novel class of dendritic ligands (L1 and L2, respectively; see Figure 1 for their structural formulas) have been prepared and employed. The metal dendrimers investigated are [Ru(bpy)(2)(L1)](2+) (1; bpy = 2,2'-bipyridine), [Ru(bpy)(2)(L2)](2+) (2), and [Ru(L1)(3)](2+) (3; see Figure 2). For the sake of completeness and comparison purposes, also the absorption spectra, redox behavior, and luminescence properties of L1 and L2 have been studied, together with the properties of 3,6-di(tert-butyl)carbazole (L0) and [Ru(bpy)(2)(phen)](2+) (4, phen = 1,10-phenanthroline). The absorption spectra of the free dendritic ligands show features which can be assigned to the various subunits (i.e., carbazole and phenanthroline groups) and additional bands at lower energies (at lambda > 300 nm) which are assigned to carbazole-to-phenanthroline charge-transfer (CT) transitions. These latter bands are significantly red-shifted upon acid and/or zinc acetate addition. Both L1 and L2 exhibit relatively intense luminescence at room temperature in fluid solution (lifetimes in the nanosecond time scale, quantum yields of the order of 10(-2)-10(-1)) and at 77 K in rigid matrix (lifetimes in the millisecond time scale). Such a luminescence is assigned to CT states at room temperature and to phenanthroline-centered pi-pi triplet levels at 77 K. The room-temperature luminescence of L1 and L2 is totally quenched by acid or zinc acetate. The metal dendrimers exhibit the typical absorption and luminescence properties of Ru(II) polypyridine complexes. In particular, metal-to-ligand charge-transfer (MLCT) bands dominate the visible absorption spectra, and formally triplet MLCT levels govern the excited-state properties. Excitation spectroscopy evidences that all the light absorbed by the dendritic branches is transferred with unitary efficiency to the luminescent MLCT states in 1-3, showing that the new metal dendrimers can be regarded as efficient light-harvesting antenna systems. All the free ligands and metal dendrimers exhibit a rich redox behavior (except L2 and 3, whose redox behavior was not investigated because of solubility reasons), with clearly attributable reversible carbazole- and metal-centered oxidation and polypyridine-centered reduction processes. The electronic interaction between the carbazole redox-active sites of the dendritic ligands is affected by Ru(II) coordination.  相似文献   

11.
An organized molecular assembly composed of two ruthenium polypyridine complexes, Ru(bpy)(2)(bpz)(2+) and Ru(bpy)(2)(H(2)O)(2)(2+) (where bpy = 2, 2'-bipyridine and bpz = 2, 2'-bipyrazine), has been prepared in adjacent supercages of Y-zeolite. This material has been characterized by diffuse reflectance, electronic absorption, electronic emission, and resonance Raman (RR) spectroscopy, as well as lifetime measurements. The spectral results confirm the identity of the entrapped complexes and resonance Raman measurements show that the relative concentrations of the two complexes within the zeolite particles are identical. A dramatic decrease in emission intensity observed for the adjacent cage assembly, relative to that observed for an appropriate reference material composed of a mixture of zeolite particles containing the separated complexes, indicates strong interaction between the adjacent complexes which provides an additional nonradiative decay pathway. The excited state lifetime measurements implicate a very short-lived component, dominating the decay curve at early times, which is most reasonably attributed to excited-state electron-transfer quenching of the adjacent cage pair. More importantly, analysis of diffuse reflectance spectra acquired during selective (sensitizer) irradiation of a sample of this material, wherein the remaining cages are filled with a suitable acceptor (MV(2+)), provides direct evidence for oxidation of the Ru(bpy)(2)(H(2)O)(2)(2+) donor complex, confirming the targeted synergy of the adjacent cage assembly.  相似文献   

12.
The reactions of bidentate diimine ligands (L2) with cationic bis(diimine)[Ru(L)(L1)(CO)Cl]+ complexes (L, L1, L2 are dissimilar diimine ligands), in the presence of trimethylamine-N-oxide (Me3NO) as a decarbonylation reagent, lead to the formation of heteroleptic tris(diimine) ruthenium(II) complexes, [Ru(L)(L1)(L2)]2+. Typically isolated as hexafluorophosphate or perchlorate salts, these complexes were characterised by UV-visible, infrared and mass spectroscopy, cyclic voltammetry, microanalyses and NMR spectroscopy. Single crystal X-ray studies have elucidated the structures of K[Ru(bpy)(phen)(4,4'-Me(2)bpy)](PF(6))(3).1/2H(2)O, [Ru(bpy)(5,6-Me(2)phen)(Hdpa)](ClO(4))(2), [Ru(bpy)(phen)(5,6-Me(2)phen)](ClO(4))(2), [Ru(bpy)(5,6'-Me(2)phen)(4,4'-Me(2)bpy)](PF(6))(2).EtOH, [Ru(4,4'-Me(2)bpy)(phen)(Hdpa)](PF(6))(2).MeOH and [Ru(bpy)(4,4'-Me(2)bpy)(Hdpa)](ClO(4))(2).1/2Hdpa (where Hdpa is di(2-pyridyl)amine). A novel feature of the first complex is the presence of a dinuclear anionic adduct, [K(2)(PF(6))(6)](4-), in which the two potassium centres are bridged by two fluorides from different hexafluorophosphate ions forming a K(2)F(2) bridging unit and by two KFPFK bridging moieties.  相似文献   

13.
Dye-sensitized mesoporous nanocrystalline SnO2 electrodes and the pseudohalogen redox mediator (SeCN)2/SeCN- or (SCN)2/SCN- or the halogen redox mediator I3-/I- were implemented for regenerative solar cell studies. Adsorption isotherms of the sensitizers Ru(deeb)(bpy)2(PF6)2, Ru(deeb)2(dpp)(PF6)2, and Ru(deeb2(bpz)(PF6)2, where deeb is 4,4'-diethylester-2,2'-bipyridine, dpp is 2,3-dipyridyl pyrazine, and bpz is bipyrazine, binding to the SnO2 surface were well described by the Langmuir model from which the saturation coverage, Gamma0 = 1.7 x 10(-8) mol/cm2, and surface-adduct formation constant, Kad = 2 x 10(5) M(-1), were obtained. Following excited-state interfacial electron transfer, the oxidized sensitizers were reduced by donors present in the acetonitrile electrolyte as shown by transient absorption spectroscopy. With iodide as the donor, a rate constant k > 10(8) s(-1) was measured for sensitizer regeneration. In regenerative solar cells, it was found that the incident photon-to-current conversion efficiencies and open circuit voltages (Voc) were comparable for (SeCN)2/SeCN- and I3-/I- for all three sensitizers. The Voc varied linearly with the logarithm of the short circuit photocurrent densities (Jsc), with typical correlations of approximately 50-60 mV/decade. Capacitance measurements of the SnO2 electrode in the presence of I3-/I-, (SeCN)2/SeCN- or (SCN)2/SCN- are reported.  相似文献   

14.
In our hopes to improve the photocatalytic efficiency of photo-hydrogen-evolving molecular devices, several new dyads and triads possessing a photosensitizing Ru(bpy)(phen)(2)(2+) (or Ru(phen)(3)(2+)) chromophore (abbreviated as Ru(II)) attached to both/either a phenothiazine moiety (abbreviated as Phz) and/or H(2)-evolving PtCl(2)(bpy) units (abbreviated as Pt), such as Phz-Ru(II)-Pt2 (triad), Ru(II)-Pt2 (dyad), and Ru(II)-Pt3 (dyad), were synthesized and their basic properties together with the photo-hydrogen-evolving characteristics were investigated in detail. The (3)MLCT phosphorescence from the Ru(II) moiety in these systems is substantially quenched due to the highly efficient photoinduced electron transfer (PET). Based on the electrochemical studies, the driving forces for the PET were estimated as -0.07 eV for Phz-Ru(II)-Pt2, -0.24 eV for Ru(II)-Pt2, and -0.22 eV for Ru(II)-Pt3, revealing the exergonic character of the PET in these systems. Luminescence lifetime studies revealed the existence of more than two decay components, indicative of a contribution of multiple PET processes arising from the presence of at least two different conformers in solution. The major luminescence decay components of the hybrid systems [τ(1) = 6.5 ns (Ru(II)-Pt2) and τ(1) = 1.04 ns (Phz-Ru(II)-Pt2) in acetonitrile] are much shorter than those of Phz-free/Pt-free Ru(bpy)(phen)(2)(2+) derivatives. An important finding is that the triad Phz-Ru(II)-Pt2 affords a quite long-lived charge separated (CS) state (τ(CS) = 43 ns), denoted as Phz(+)˙-Ru(Red)-Pt2, as a result of reductive quenching of the triplet excited state of Ru(bpy)(phen)(2)(2+) by the tethering Phz moiety, where Ru(Red) denotes Ru(bpy)(phen)(2)(+). Moreover, the lifetime of Phz(+)˙-Ru(Red)-Pt2 was observed to be much longer than that of Phz(+)˙-Ru(Red). The photocatalytic H(2) evolution from water driven by these systems was examined in an aqueous acetate buffer solution (pH 5.0) containing 4-19% dimethylsulfoxide (solubilising reagent) in the presence of EDTA as a sacrificial electron donor. Dyads Ru(II)-Pt2 and Ru(II)-Pt3 were found to exhibit improved photo-hydrogen-evolving activity compared to the heterodinuclear Ru-Pt dyads developed so far in our group. On the other hand, almost no catalytic activity was observed for Phz-Ru(II)-Pt2 in spite of the formation of a strongly reducing Ru(Red) site (Phz(+)˙-Ru(Red)-Pt2), indicating that the electron transfer from the photogenerated Ru(Red) unit to the PtCl(2)(bpy) unit is not favoured presumably due to the slow electron transfer rate in the Marcus inverted region.  相似文献   

15.
A series of Ru(II)-peptide nucleic acid (PNA)-like monomers, [Ru(bpy)(2)(dpq-L-PNA-OH)](2+) (M1), [Ru(phen)(2)(dpq-L-PNA-OH)](2+) (M2), [Ru(bpy)(2)(dppz-L-PNA-OH)](2+) (M3), and [Ru(phen)(2)(dppz-L-PNA-OH)](2+) (M4) (bpy = 2,2'-bipyridine, phen = 1,10-phenanthroline, dpq-L-PNA-OH = 2-(N-(2-(((9H-fluoren-9-yl)methoxy)carbonylamino)ethyl)-6-(dipyrido[3,2-a:2',3'-c]phenazine-11-carboxamido)hexanamido)acetic acid, dppz-L-PNA-OH = 2-(N-(2-(((9H-fluoren-9-yl) methoxy)carbonylamino)ethyl)-6-(dipyrido[3,2-f:2',3'-h]quinoxaline-2-carboxamido)acetic acid) have been synthesized and characterized by IR and (1)H NMR spectroscopy, mass spectrometry, and elemental analysis. As is typical for Ru(II)-tris(diimine) complexes, acetonitrile solutions of these complexes (M1-M4) show MLCT transitions in the 443-455 nm region and emission maxima at 618, 613, 658, and 660 nm, respectively, upon photoexcitation at 450 nm. Changes in the ligand environment around the Ru(II) center are reflected in the luminescence and electrochemical response obtained from these monomers. The emission intensity and quantum yield for M1 and M2 were found to be higher than for M3 and M4. Electrochemical studies in acetonitrile show the Ru(II)-PNA monomers to undergo a one-electron redox process associated with Ru(II) to Ru(III) oxidation. A positive shift was observed in the reversible redox potentials for M1-M4 (962, 951, 936, and 938 mV, respectively, vs Fc(0/+) (Fc = ferrocene)) in comparison with [Ru(bpy)(3)](2+) (888 mV vs Fc(0/+)). The ability of the Ru(II)-PNA monomers to generate electrochemiluminescence (ECL) was assessed in acetonitrile solutions containing tripropylamine (TPA) as a coreactant. Intense ECL signals were observed with emission maxima for M1-M4 at 622, 616, 673, and 675 nm, respectively. At an applied potential sufficiently positive to oxidize the ruthenium center, the integrated intensity for ECL from the PNA monomers was found to vary in the order M1 (62%) > M3 (60%) > M4 (46%) > M2 (44%) with respect to [Ru(bpy)(3)](2+) (100%). These findings indicate that such Ru(II)-PNA bioconjugates could be investigated as multimodal labels for biosensing applications.  相似文献   

16.
Zigler DF  Wang J  Brewer KJ 《Inorganic chemistry》2008,47(23):11342-11350
Bimetallic complexes of the form [(bpy)(2)Ru(BL)RhCl(2)(phen)](PF(6))(3), where bpy = 2,2'-bipyridine, phen = 1,10-phenanthroline, and BL = 2,3-bis(2-pyridyl)pyrazine (dpp) or 2,2'-bipyrimidine (bpm), were synthesized, characterized, and compared to the [{(bpy)(2)Ru(BL)}(2)RhCl(2)](PF(6))(5) trimetallic analogues. The new complexes were synthesized via the building block method, exploiting the known coordination chemistry of Rh(III) polyazine complexes. In contrast to [{(bpy)(2)Ru(dpp)}(2)RhCl(2)](PF(6))(5) and [{(bpy)(2)Ru(bpm)}(2)RhCl(2)](PF(6))(5), [(bpy)(2)Ru(dpp)RhCl(2)(phen)](PF(6))(3) and [(bpy)(2)Ru(bpm)RhCl(2)(phen)](PF(6))(3) have a single visible light absorber subunit coupled to the cis-Rh(III)Cl(2) moiety, an unexplored molecular architecture. The electrochemistry of [(bpy)(2)Ru(dpp)RhCl(2)(phen)](PF(6))(3) showed a reversible oxidation at 1.61 V (vs Ag/AgCl) (Ru(III/II)), quasi-reversible reductions at -0.39 V, -0.74, and -0.98 V. The first two reductive couples corresponded to two electrons, consistent with Rh reduction. The electrochemistry of [(bpy)(2)Ru(bpm)RhCl(2)(phen)](PF(6))(3) exhibited a reversible oxidation at 1.76 V (Ru(III/II)). A reversible reduction at -0.14 V (bpm(0/-)), and quasi-reversible reductions at -0.77 and -0.91 V each corresponded to a one electron process, bpm(0/-), Rh(III/II), and Rh(II/I). The dpp bridged bimetallic and trimetallic display Ru(dpi)-->dpp(pi*) metal-to-ligand charge transfer (MLCT) transitions at 509 nm (14,700 M(-1) cm(-1)) and 518 nm (26,100 M(-1) cm(-1)), respectively. The bpm bridged bimetallic and trimetallic display Ru(dpi)-->bpm(pi*) charge transfer (CT) transitions at 581 nm (4,000 M(-1) cm(-1)) and 594 nm (9,900 M(-1) cm(-1)), respectively. The heteronuclear complexes [(bpy)(2)Ru(dpp)RhCl(2)(phen)](PF(6))(3) and [{(bpy)(2)Ru(dpp)}(2)RhCl(2)](PF(6))(5) had (3)MLCT emissions that are Ru(dpi)-->dpp(pi*) CT in nature but were red-shifted and lower intensity than [(bpy)(2)Ru(dpp)Ru(bpy)(2)](PF(6))(4). The lifetimes of the (3)MLCT state of [(bpy)(2)Ru(dpp)RhCl(2)(phen)](PF(6))(3) at room temperature (30 ns) was shorter than [(bpy)(2)Ru(dpp)Ru(bpy)(2)](PF(6))(4), consistent with favorable electron transfer to Rh(III) to generate a metal-to-metal charge-transfer ((3)MMCT) state. The reported synthetic methods provide means to a new molecular architecture coupling a single Ru light absorber to the Rh(III) center while retaining the interesting cis-Rh(III)Cl(2) moiety.  相似文献   

17.
The synthesis and characterization of new Ru(II) and Os(II) complexes of the ligand eilatin (1) are described. The new complexes [Ru(bpy)(eil)(2)](2+) (2), [Ru(eil)(3)](2+) (3), and [Os(eil)(3)](2+) (4) (bpy = 2,2'-bipyridine; eil = eilatin) were synthesized and characterized by NMR, fast atom bombardment mass spectrometry, and elemental analysis. In the series of complexes [Ru(bpy)(x)(eil)(y)()](2+) (x + y = 3), the effect of sequential substitution of eil for bpy on the electrochemical and photophysical properties was examined. The absorption spectra of the complexes exhibit several bpy- and eil-associated pi-pi and metal-to-ligand charge-transfer (MLCT) transitions in the visible region (400-600 nm), whose energy and relative intensity depend on the number of ligands bound to the metal center (x and y). On going from [Ru(bpy)(2)(eil)](2+) (5) to 2 to 3, the d(pi)(Ru) --> pi(eil) MLCT transition undergoes a red shift from 583 to 591 to 599 nm, respectively. Electrochemical measurements performed in dimethyl sulfoxide reveal several ligand-based reduction processes, where each eil ligand can accept up to two electrons at potentials that are significantly anodically shifted (by ca. 1 V) with respect to the bpy ligands. The complexes exhibit near-IR emission (900-1100 nm) of typical (3)MLCT character, both at room temperature and at 77 K. Along the series 5, 2, and 3, upon substitution of eil for bpy, the emission maxima undergo a blue shift and the quantum yields and lifetimes increase. The radiative and nonradiative processes that contribute to deactivation of the excited level are discussed in detail.  相似文献   

18.
This work describes a study of Ru(II) and Os(II) polypyridyl complexes of the symmetrical, fused-aromatic bridging ligand dibenzoeilatin (1). The synthesis, purification, and structural characterization by NMR of the mononuclear complexes [Ru(bpy)(2)(dbneil)](2+) (2), [Ru(tmbpy)(2)(dbneil)](2+) (3), and [Os(bpy)(2)(dbneil)](2+) (4), the homodinuclear complexes [[Ru(bpy)(2)](2)[micro-dbneil]](4+) (5), [[Ru(tmbpy)(2)](2)[micro-dbneil]](4+) (6), and [[Os(bpy)(2)](2)[micro-dbneil]](4+) (7), and the heterodinuclear complex [[Ru(bpy)(2)][micro-dbneil][Os(bpy)(2)]](4+) (8) are described, along with the crystal structures of 4, 6, and 7. Absorption spectra of the mononuclear complexes feature a low-lying MLCT band around 600 nm. The coordination of a second metal fragment results in a dramatic red shift of the MLCT band to beyond 700 nm. Cyclic and square wave voltammograms of the mononuclear complexes exhibit one reversible metal-based oxidation, as well as several ligand-based reduction waves. The first two reductions, attributed to reduction of the dibenzoeilatin ligand, are substantially anodically shifted compared to [M(bpy)(3)](2+) (M = Ru, Os), consistent with the low-lying pi orbital of dibenzoeilatin. The dinuclear complexes exhibit two reversible, well-resolved, metal-centered oxidation waves, despite the chemical equivalence of the two metal centers, indicating a significant metal-metal interaction mediated by the conjugated dibenzoeilatin ligand. Luminescence spectra, quantum yield, and lifetime measurements at room temperature in argon-purged acetonitrile have shown that the complexes exhibit (3)MLCT emission, which occurs in the IR-region between 950 and 1300 nm. The heterodinuclear complex 8 exhibits luminescence only from the Ru-based fragment, the intensity of which is less than 1% of that observed in the corresponding homodinuclear complex 5; no emission from the Os-based unit is observed, and an intramolecular quenching constant of k(q) > or = 3 x10(9) s(-)(1) is evaluated. The nature of the quenching process is briefly discussed.  相似文献   

19.
The yields and dynamics for energy transfer from the metal-to-ligand charge-transfer excited states of Ru(deeb)(bpy)(2)(PF(6))(2), Ru(2+), and Os(deeb)(bpy)(2)(PF(6))(2), Os(2+), where deeb is 4,4'-(CH(3)CH(2)CO(2))(2)-2,2'-bipyridine, anchored to mesoporous nanocrystalline (anatase) TiO(2) thin films were quantified. Lateral energy transfer from Ru(2+)* to Os(2+) was observed, and the yields were measured as a function of the relative surface coverage and the external solvent environment (CH(3)CN, THF, CCl(4), and hexanes). Excited-state decay of Ru(2+)*/TiO(2) was well described by a parallel first- and second-order kinetic model, whereas Os(2+)*/TiO(2) decayed with first-order kinetics within experimental error. The first-order component was assigned to the radiative and nonradiative decay pathways (tau = 1 micros for Ru(2+)*/TiO(2) and tau = 50 ns for Os(2+)*/TiO(2)). The second-order component was attributed to intermolecular energy transfer followed by triplet-triplet annihilation. An analytical model was derived that allowed determination of the fraction of excited-states that follow the two pathways. The fraction of Ru(2+)*/TiO(2) that decayed through the second-order pathway increased with surface coverage and excitation intensity. Monte Carlo simulations were performed to estimate the Ru(2+)* --> Ru(2+) intermolecular energy transfer rate constant of (30 ns)(-1).  相似文献   

20.
Femto- to picosecond excited-state dynamics of the complexes [Re(L)(CO)(3)(N,N)](n) (N,N = bpy, phen, 4,7-dimethyl-phen (dmp); L = Cl, n = 0; L = imidazole, n = 1+) were investigated using fluorescence up-conversion, transient absorption in the 650-285 nm range (using broad-band UV probe pulses around 300 nm) and picosecond time-resolved IR (TRIR) spectroscopy in the region of CO stretching vibrations. Optically populated singlet charge-transfer (CT) state(s) undergo femtosecond intersystem crossing to at least two hot triplet states with a rate that is faster in Cl (~100 fs)(-1) than in imidazole (~150 fs)(-1) complexes but essentially independent of the N,N ligand. TRIR spectra indicate the presence of two long-lived triplet states that are populated simultaneously and equilibrate in a few picoseconds. The minor state accounts for less than 20% of the relaxed excited population. UV-vis transient spectra were assigned using open-shell time-dependent density functional theory calculations on the lowest triplet CT state. Visible excited-state absorption originates mostly from mixed L;N,N(?-) → Re(II) ligand-to-metal CT transitions. Excited bpy complexes show the characteristic sharp near-UV band (Cl, 373 nm; imH, 365 nm) due to two predominantly ππ*(bpy(?-)) transitions. For phen and dmp, the UV excited-state absorption occurs at ~305 nm, originating from a series of mixed ππ* and Re → CO;N,N(?-) MLCT transitions. UV-vis transient absorption features exhibit small intensity- and band-shape changes occurring with several lifetimes in the 1-5 ps range, while TRIR bands show small intensity changes (≤5 ps) and shifts (~1 and 6-10 ps) to higher wavenumbers. These spectral changes are attributable to convoluted electronic and vibrational relaxation steps and equilibration between the two lowest triplets. Still slower changes (≥15 ps), manifested mostly by the excited-state UV band, probably involve local-solvent restructuring. Implications of the observed excited-state behavior for the development and use of Re-based sensitizers and probes are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号