首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In classical physics the electromagnetic equations are described by Maxwell's equations. Maxwell's equations proved to be invariant under gauge, or Lorentz transformations. Also, Einstein's equations of the special theory of relativity are invariant under Lorentz transformations. On the other hand classical mechanics and quantum mechanics laws are invariant under Galilean transformations. This means that, there are two different dynamical structures describing our universe. Einstein's unified field theory failled in putting our universe in one dynamical structure. New electromagnetic and force field equations are going to be derived. They have the same shape like Maxwell's equations, but with different dynamical structure. Those equations are invariant under Galilean transformations and in the density matrix formalism of quantum mechanics.  相似文献   

3.
The theory of the interaction between a complex scalar field and the electromagnetic field is presented with initial and final conditions that allow an interpretation in the context of the relativistic quantum mechanics of a single charged scalar particle. Included are particle scattering, antiparticle scattering, pair creation, and pair annihilation due to a classical dynamical electromagnetic field. The equations of motion are solved by a perturbation expansion, which does not lead to the troublesome divergent terms of quantum field theory.  相似文献   

4.
The non-equilibrium processes of quark-gluon-plasma (QGP) in the coexistent phase of first order phase transition are studied under Lee's model. Both the classical and the quantum transport equations of quark as well as the corresponding hydrodynamical equations are obtained. The classical transport equations are deduced from the quantum ones in the semiclassical limit, showing that the theory is self-consistent. The transport equations of gluon in the semi-classical limit and the equation for the fluctuation of gluon distribution function under the condition of near-equilibrium are also derived.  相似文献   

5.
We investigate quantum kinetic theory for a massive fermion system under a rotational field. From the Dirac equation in rotating frame we derive the complete set of kinetic equations for the spin components of the 8- and 7-dimensional Wigner functions. While the particles are no longer on a mass shell in the general case due to the rotation–spin coupling, there are always only two independent components, which can be taken as the number and spin densities. With help from the off-shell constraint we obtain the closed transport equations for the two independent components in the classical limit and at the quantum level. The classical rotation–orbital coupling controls the dynamical evolution of the number density, but the quantum rotation–spin coupling explicitly changes the spin density.  相似文献   

6.
This paper is devoted to a constructiveand critical analysis of the structure of certain dynamical systems from a group manifold point of view recently developed. This approach is especially suitable for discussing the structure of the quantum theory, the classical limit, the Hamilton-Jacobi theory and other problems such as the definition and globalization of the Poincaré-Cartan form which appears in the variational approach to higher order dynamical systems. At the same time, i t opens a way for the classification of all hamiltonian and lagrangian systems associated with suitably defined dynamical groups. Both classical and quantum dynamics are discussed, and examples of all the different structures appearingin the theory are provided, including a treatment of constrained and generalized higher order dynamical systems.  相似文献   

7.
The quantum mechanics with a stationary non-Hermitian Hamiltonian and a complex evolution parameter, as well as its classical limit with nontrivial correlations have been studied. The corresponding dynamics is shown to be irreversible for the isothermal and adiabatic regimes of quantum and classical evolution. The possibility of a universal relationship between irreversibility and dynamical parity violation in the system has been established. The mechanism of gravity generation by the distribution of correlations in a free theory is demonstrated.  相似文献   

8.
The classical Yang–Baxter equation(CYBE) is an algebraic equation central in the theory of integrable systems. Its nondegenerate solutions were classified by Belavin and Drinfeld. Quantization of CYBE led to the theory of quantum groups. A geometric interpretation of CYBE was given by Drinfeld and gave rise to the theory of Poisson–Lie groups. The classical dynamical Yang–Baxter equation (CDYBE) is an important differential equation analogous to CYBE and introduced by Felder as the consistency condition for the differential Knizhnik–Zamolodchikov–Bernard equations for correlation functions in conformal field theory on tori. Quantization of CDYBE allowed Felder to introduce an interesting elliptic analog of quantum groups. It becomes clear that numerous important notions and results connected with CYBE have dynamical analogs. In this paper we classify solutions to CDYBE and give geometric interpretation to CDYBE. The classification and interpretation are remarkably analogous to the Belavin–Drinfeld picture. Received: 24 March 1997 / Accepted: 20 June 1997  相似文献   

9.
10.
We investigate the global chirality distribution of the quantum walk on the line when decoherence is introduced either through simultaneous measurements of the chirality and particle position, or as a result of broken links. The first mechanism drives the system towards a classical diffusive behavior. This is used to build new quantum games, similar to the spin-flip game. The second mechanism involves two different possibilities: (a) All the quantum walk links have the same probability of being broken. (b) Only the quantum walk links on a half-line are affected by random breakage. In case (a) the decoherence drives the system to a classical Markov process, whose master equation is equivalent to the dynamical equation of the quantum density matrix. This is not the case in (b) where the asymptotic global chirality distribution unexpectedly maintains some dependence with the initial condition. Explicit analytical equations are obtained for all cases.  相似文献   

11.
The behavior of any physical system is governed by its underlying dynamical equations. Much of physics is concerned with discovering these dynamical equations and understanding their consequences. In this Letter, we show that, remarkably, identifying the underlying dynamical equation from any amount of experimental data, however precise, is a provably computationally hard problem (it is NP hard), both for classical and quantum mechanical systems. As a by-product of this work, we give complexity-theoretic answers to both the quantum and classical embedding problems, two long-standing open problems in mathematics (the classical problem, in particular, dating back over 70?years).  相似文献   

12.
Despite the many successes of the relativistic quantum theory developed by Horwitz et al., certain difficulties persist in the associated covariant classical mechanics. In this paper, we explore these difficulties through an examination of the classical. Coulomb problem in the framework of off-shell electrodynamics. As the local gauge theory of a covariant quantum mechanics with evolution paratmeter τ, off-shell electrodynamics constitutes a dynamical theory of ppacetime events, interacting through five τ-dependent pre-Maxwell potentials. We present a straightforward solution of the classical equations of motion, for a test event traversing the field induced by a “fixed” event (an event moving uniformly along the time axis at a fixed point in space). This solution is seen to be unsatisfactory, and reveals the essential difficulties in the formalism at the classical levels. We then offer a new model of the particle current—as a certain distribution of the event currents on the worldline—which eliminates these difficulties and permits comparison of classisical off-shell electrodynamics with the standard Maxwell theory. In this model, the “fixed” event induces a Yukawa-type potential, permitting a semiclassical identification of the pre-Maxwell time scale λ with the inverse mass of the intervening photon. Numerical solutions to the equations of motion are compared with the standard Maxwell solutions, and are seen to coincide when λ≳10−6 seconds, providing an initial estimate of this parameter. It is also demonstrated that the proposed model provides a natural interpretation for the photon mass cut-off required for the renormalizability of the off-shell quantum electrodynamics.  相似文献   

13.
The exact formula of the one-level distribution of the Schmidt eigenvalues is obtained for dynamical formation of entanglement in quantum chaos. The formula is based on the random matrix theory of the fixed-trace ensemble, and is derived using the theory of the holonomic system of differential equations. We confirm that the formula describes the universality of the distribution of the Schmidt eigenvalues in quantum chaos.  相似文献   

14.
The τ-functions, which represent the totality of solutions for hierarchies of equations in soliton theory, are identified with the coherent states of the infinite dimensional Lie algebra gl(∞). The associated quantum system can be realized by an infinite set of harmonically interacting fermionic modes. The soliton dynamical evolution is thus mapped into a quantum hamiltonian evolution, and the latter back into a classical hamiltonian flow corresponding to a succession of infinitesimal contact Bäcklund transformations.  相似文献   

15.
 The two-Hilbert-space theory of scattering is reviewed with particular reference to its application to nonrelativistic multichannel quantum- mechanical scattering theory. In Part I the abstract assumptions of the theory are collected, transition operators (both on- and off-energy-shell) are defined, the dynamical equations that determine the off-shell transition operators are presented and their real-energy limits examined, and the convergence of sequences of approximate transition operators is established. A section on how to incorporate group symmetries into the formalism reports new work. The material of Part I is relevant to a variety of both classical and quantum scattering systems. In Part II attention is directed specifically to N-body nonrelativistic quantum scattering systems in which the particles interact via short-range pair potentials. A method of constructing approximate transition operators is presented and shown to satisfy all the abstract assumptions of Part I. The dynamical equations that determine the half-on-shell approximate transition operators are shown to be coupled one-dimensional integral equations that have compact kernels and unique solutions when considered as operators on a Hilbert space of H?lder continuous functions. Moreover, the on-shell parts of those approximate transition amplitudes are shown to converge to the exact on-shell amplitudes as the order of the approximation increases. Detailed formulas for the kernels of the integral equations are written down for systems of particles that are distinguishable and for systems containing identical particles. Finally, some important open problems are described. Received July 2, 1999; accepted in final form October 27, 1999  相似文献   

16.
We study the long time dynamics of a quantum version of the Sherrington-Kirkpatrick model. Time reparametrizations of the dynamical equations have a parallel with renormalization group transformations; in this language the long time behavior of this model is controlled by a reparametrization group ( R(p)G) fixed point of the classical dynamics. The irrelevance of quantum terms in the dynamical equations in the aging regime explains the classical nature of the out of equilibrium fluctuation-dissipation relation.  相似文献   

17.
The perturbation theory developed for liquids is used to derive an expression for the first-order quantum correction to the radial distribution function of a fluid. The result is given in terms of grand canonical ensemble distribution functions for the classical fluid. The equations giving the thermodynamic functions in terms of the radial distribution function are discussed, and differences in the quantum and classical cases emphasized. An equation relating the two- and three-body classical distribution functions, derived recently by Singh and Ram using an indirect method, is shown to be simply related to the second equation of the BGY hierarchy.  相似文献   

18.
The dynamics of cold atoms in conservative optical lattices obviously depends on the geometry of the lattice. But very similar lattices may lead to deeply different dynamics. In a 2D optical lattice with a square mesh, it is expected that the coupling between the degrees of freedom leads to chaotic motions. However, in some conditions, chaos remains marginal. The aim of this paper is to understand the dynamical mechanisms inhibiting the appearance of chaos in such a case. As the quantum dynamics of a system is defined as a function of its classical dynamics – e.g. quantum chaos is defined as the quantum regime of a system whose classical dynamics is chaotic – we focus here on the dynamical regimes of classical atoms inside a well. We show that when chaos is inhibited, the motions in the two directions of space are frequency locked in most of the phase space, for most of the parameters of the lattice and atoms. This synchronization, not as strict as that of a dissipative system, is nevertheless a mechanism powerful enough to explain that chaos cannot appear in such conditions.  相似文献   

19.
Unlike states in quantum mechanics or kinetic theory, it is generally believed that a classical state is a function with no spread; i.e., it does not involve any statistics. But a unified theory of dynamical processes suggests the plausibility of substituting for it the functional of error distribution.  相似文献   

20.
The quantum theory of the two-level atom coupled to a single mode of the electromagnetic field is considered as a simple example of “quantum chaos”, defined as the quantum behavior of a dynamical system which is non-integrable in the classical limit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号