首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We consider the system
$\begin{gathered} x_{k + 1} = A_k x_k + b_k u_k , \hfill \\ u_{k + 1} = m_k^* x_k ,k = 1,2,..., \hfill \\ \end{gathered} $\begin{gathered} x_{k + 1} = A_k x_k + b_k u_k , \hfill \\ u_{k + 1} = m_k^* x_k ,k = 1,2,..., \hfill \\ \end{gathered}   相似文献   

2.
3.
For the classes of periodic functions with r-th derivative integrable in the mean,we obtain a best quadrature formula of the form $$\begin{gathered} \int_0^1 {f(x)dx = \sum\nolimits_{k = 0}^{m - 1} {\sum\nolimits_{l = 0}^\rho {p_{k,l} } } } f^{(l)} (x_k ) + R(f),0 \leqslant \rho \leqslant r - 1, \hfill \\ 0 \leqslant x_0< x_1< ...< x_{m - 1} \leqslant 1, \hfill \\ \end{gathered}$$ where ρ=r?2 and r?3, r=3, 5, 7, ..., and we determine an exact bound for the error of this formula.  相似文献   

4.
Letμ>m?1, letν be a rational number, and letω k=b k v , where bk ≠ 0 are distinct numbers of an imaginary quadratic field K, which satisfy some additional conditions. Then $$\begin{gathered} |{}_1x_1 \omega _1 + ... + x_m \omega _m | > X^{ - \mu } , \hfill \\ X = \max |x_k | \geqslant X, > 0, \hfill \\ 1 \leqslant k \leqslant m \hfill \\ \end{gathered}$$ where x1, ..., xm are integers of the field K, and X0 is an effective constant.  相似文献   

5.
A thorough investigation of the systemd~2y(x):dx~2 p(x)y(x)=0with periodic impulse coefficientsp(x)={1,0≤xx_0>0) -η, x_0≤x<2π(η>0)p(x)=p(x 2π),-∞相似文献   

6.
For a homogeneous diffusion process (X t ) t?0, we consider problems related to the distribution of the stopping times $\begin{gathered} \gamma _{\max } = \inf \{ t \geqslant 0:\mathop {\sup }\limits_{s \leqslant t} X_s - X_t \geqslant H\} ,\gamma _{\min } = \inf \{ t \geqslant 0:X_t - \mathop {\inf }\limits_{s \leqslant t} X_s \geqslant H\} , \hfill \\ \kappa _0 = \inf \{ t \geqslant 0:\mathop {\sup }\limits_{s \leqslant t} X_s - \mathop {\inf }\limits_{s \leqslant t} X_s \geqslant H\} . \hfill \\ \end{gathered} $ . The results obtained are used to construct an inductive procedure allowing us to find the distribution of the increments of the process X between two adjacent kagi and renko instants of time.  相似文献   

7.
The paper treats of the numerical approximation for the following boundary value problem: $$ \left\{ \begin{gathered} u_t (x,t) - u_{xx} (x,t) = 0, 0 < x < 1, t \in (0,T), \hfill \\ u(0,t) = 1, u_x (1,t) = - u^{ - p} (1,t), t \in (0,T), \hfill \\ u(x,0) = u_0 (x) > 0, 0 \leqslant x \leqslant 1, \hfill \\ \end{gathered} \right. $$ where p > 0, u 0C 2([0, 1]), u 0(0) = 1, and u′ 0(1) = ?u 0 ?p (1). Conditions are specified under which the solution of a discrete form of the above problem quenches in a finite time, and we estimate its numerical quenching time. It is also proved that the numerical quenching time converges to real time as the mesh size goes to zero. Finally, numerical experiments are presented which illustrate our analysis.  相似文献   

8.
A difference scheme is constructed for the solution of the variational equation $$\begin{gathered} a\left( {u, v} \right)---u \geqslant \left( {f, v---u} \right)\forall v \varepsilon K,K \{ vv \varepsilon W_2^2 \left( \Omega \right) \cap \mathop {W_2^1 \left( \Omega \right)}\limits^0 ,\frac{{\partial v}}{{\partial u}} \geqslant 0 a.e. on \Gamma \} ; \hfill \\ \Omega = \{ x = (x_1 ,x_2 ):0 \leqslant x_\alpha< l_\alpha ,\alpha = 1, 2\} \Gamma = \bar \Omega - \Omega ,a(u, v) = \hfill \\ = \int\limits_\Omega {\Delta u\Delta } vdx \equiv (\Delta u,\Delta v, \hfill \\ \end{gathered} $$ The following bound is obtained for this scheme: $$\left\| {y - u} \right\|_{W_2 \left( \omega \right)}^2 = 0(h^{(2k - 5)/4} )u \in W_2^k \left( \Omega \right),\left\| {y - u} \right\|_{W_2^2 \left( \omega \right)} = 0(h^{\min (k - 2;1,5)/2} ),u \in W_\infty ^k \left( \Omega \right) \cap W_2^3 \left( \Omega \right)$$ The following bounds are obtained for the mixed boundary-value problem: $$\begin{gathered} \left\| {y - u} \right\|_{W_2^2 \left( \omega \right)} = 0\left( {h^{\min \left( {k - 2;1,5} \right)} } \right),u \in W_\infty ^k \left( \Omega \right),\left\| {y - u} \right\|_{W_2^2 \left( \omega \right)} = 0\left( {h^{k - 2,5} } \right), \hfill \\ u \in W_2^k \left( \Omega \right),k \in \left[ {3,4} \right] \hfill \\ \end{gathered} $$ .  相似文献   

9.
Consider the following Bolza problem: $$\begin{gathered} \min \int {h(x,u) dt,} \hfill \\ \dot x = F(x) + uG(x), \hfill \\ \left| u \right| \leqslant 1, x \in \Omega \subset \mathbb{R}^2 , \hfill \\ x(0) = x_0 , x(1) = x_1 . \hfill \\ \end{gathered} $$ We show that, under suitable assumptions onF, G, h, all optimal trajectories are bang-bang. The proof relies on a geometrical approach that works for every smooth two-dimensional manifold. As a corollary, we obtain existence results for nonconvex optimization problems.  相似文献   

10.
We show that under suitable conditions $$\begin{gathered} E_x f\left\{ {a + \int_0^t \beta \left[ {b + \int_0^s {\alpha \left( {X_r } \right)dr, c + s, X_s } } \right]ds, b + \int_0^t {\alpha \left( {X_s } \right)ds, c + t, X_t } } \right\} \hfill \\ = e^{tG} f\left[ {a, b, c, x} \right] \hfill \\ \end{gathered} $$ whereX t is a Brownian motion andG is the generator of a (C 0) contraction semigroupe tG.  相似文献   

11.
In this paper we prove the existence of solutions of the differential inclusions $$\left\{ \begin{gathered} \dot X(t) \in - A_t (X(t)) + F(t,X(t)),,0 \leqslant t \leqslant T_0 \hfill \\ X(0) = x_0 \hfill \\ \end{gathered} \right.$$ whereA t is a multivaluedm-accretive operator on a Banach spaceE andF is a measurable multifunction defined on the set \(G = \overline {\{ (t,x):A_t (x) \ne 0/\} } \) , lower semicontinuous inx and its values are not necessarily convex inE. This result generalizes some results in [1] and [9].  相似文献   

12.
In this paper we consider the behaviour of partial sums of Fourier—Walsh—Paley series on the group62-01. We prove the following theorems: Theorem 1. Let {n k } k =1/∞ be some increasing convex sequence of natural numbers such that $$\mathop {\lim sup}\limits_m m^{ - 1/2} \log n_m< \infty $$ . Then for anyfL (G) $$\left( {\frac{1}{m}\sum\limits_{j = 1}^m {|Sn_j (f;0)|^2 } } \right)^{1/2} \leqq C \cdot \left\| f \right\|_\infty $$ . Theorem 2. Let {n k } k =1/∞ be a lacunary sequence of natural numbers,n k+1/n kq>1. Then for anyfεL (G) $$\sum\limits_{j = 1}^m {|Sn_j (f;0)| \leqq C_q \cdot m^{1/2} \cdot \log n_m \cdot \left\| f \right\|_\infty } $$ . Theorems. Let µ k =2 k +2 k-2+2 k-4+...+2α 0,α 0=0,1. Then $$\begin{gathered} \{ \{ S_{\mu _k } (f:0\} _{k = 1}^\infty ;f \in L^\infty (G)\} = \{ \{ a_k \} _{k = 1}^\infty ;\sum\limits_{k = 1}^m {a_k^2 = 0(m)^2 \} .} \hfill \\ \{ \{ S_{\mu _k } (f:0\} _{k = 1}^\infty ;f \in C(G)\} = \{ \{ a_k \} _{k = 1}^\infty ;\sum\limits_{k = 1}^m {a_k^2 = o(m)^2 \} = } \hfill \\ = \{ \{ S_{\mu _k } (f:0\} _{k = 1}^\infty ;f \in C(G),f(0) = 0\} \hfill \\ \end{gathered} $$ . Theorem 4. {{S 2 k(f: 0)} k =1/∞ ,fL (G)}=m. $$\{ \{ S_{2_k } (f:0\} _{k = 1}^\infty ;f \in C(G)\} = c. \{ \{ S_{2_k } (f:0\} _{k = 1}^\infty ;f \in C(G),f(0) = 0\} = c_0 $$ .  相似文献   

13.
We study the initial boundary value problem for the nonlinear wave equation: (*) $$\left\{ \begin{gathered} \partial _t^2 u - (\partial _r^2 + \frac{{n - 1}}{r}\partial _r )u = F(\partial _t u,\partial _t^2 u),t \in \mathbb{R}^ + ,R< r< \infty , \hfill \\ u(0,r) = \in _0 u_0 (r),\partial _t u(0,r) = \in _0 u_1 (r),R< r< \infty , \hfill \\ u(t,R) = 0,t \in \mathbb{R}^ + , \hfill \\ \end{gathered} \right.$$ wheren=4,5,u 0,u 1 are real valued functions and ∈0 is a sufficiently small positive constant. In this paper we shall show small solutions to (*) exist globally in time under the condition that the nonlinear termF:?2→? is quadratic with respect to ? t u and ? t 2 u.  相似文献   

14.
modm. Ifm is natural,a an integer with (a, m)=1 put $$\begin{gathered} {}^om(a): = min\{ h\left| {h \in \mathbb{N},} \right.a^h \equiv 1(modm)\} , \hfill \\ \psi (m): = \max \{ o_m (a)\left| a \right. \in \mathbb{Z},(a,m) = 1\} , \hfill \\ g(m): = \min \{ a\left| {a \in \mathbb{N},(a,m) = 1,o_m (a) = } \right.\psi (m)\} . \hfill \\ \end{gathered} $$ Form prime,g(m) is the least natural primitive root modm. We establish the estimation $$\sum\limits_{m< x} {g(m)<< x^{1 + \varepsilon } .} $$   相似文献   

15.
Пустьk-мерное евклид ово пространствоR k рассматривается как подмножествоR n . Зафиксируемр, 1<р<∞ иα >(n?k)/p, α≠п. Как обычно, бесселев потенциалJαf обобщенной функции Шварцаf наR n определяется с помощ ью ее преобразования Фурь е \((\widehat{G_\alpha f})(\xi ) = (2\pi )^{ - n/2} [1 + |\xi |^2 ]^{\alpha /2} f(\xi ), \xi \in R^n .B\) , ξ∈R n . В работе характ еризуются положител ьные весовые функцииw(x 1,...,x k ), которые при продолжении наR n с помощью равенстваw(x 1,...,x k ,...,x n )=w(x 1, ...,x k ) обладают с ледующим свойством: существует числос>0, не зависящее отf, такое, что $$\begin{gathered} \int\limits_{R^k } {|(G_\alpha f)(x_1 ,...,x_k ,0,...,0)w(x_1 ,...,x_k )|^p dx_1 ...dx_k \leqq } \hfill \\ \leqq C\int\limits_{R^n } {|f(x_1 ,...,x_n )w(x_1 ,...,x_n )|^p dx_1 ...dx_n } \hfill \\ \end{gathered} $$   相似文献   

16.
In this paper we investigate symmetry results for positive solutions of systems involving the fractional Laplacian (1) $\left\{ \begin{gathered} ( - \Delta )^{\alpha _1 } u_1 (x) = f_1 (u_2 (x)),x \in \mathbb{R}^\mathbb{N} , \hfill \\ ( - \Delta )^{\alpha _2 } u_2 (x) = f_2 (u_1 (x)),x \in \mathbb{R}^\mathbb{N} , \hfill \\ \lim _{|x| \to \infty } u_1 (x) = \lim _{|x| \to \infty } u_2 (x) = 0 \hfill \\ \end{gathered} \right. $ where N ≥ 2 and α 1, α 2 ∈ (0, 1). We prove symmetry properties by the method of moving planes.  相似文献   

17.
The variety \(\mathfrak{u}_{m,n} \) is defined by the system of n-ary operations ωi,..., ωm, the system of m-ary operations ?i,..., ?n, 1≤ m ≤ n, and the system of identities $$\begin{gathered} x_1 ...x_n \omega _1 ...x_1 ...x_n \omega _m \varphi _i = x_i (i = 1,...,n), \hfill \\ x_1 ...x_m \varphi _1 ...x_1 ...x_m \varphi _n \omega _j = x_j (i = 1,...,m), \hfill \\ \end{gathered} $$ It is proved in this paper that the subalgebra U of the free product \(\Pi _{i \in I}^* A_i \) of the algebras Ai (i ε I) can be expanded as the free product of nonempty intersections U ∩ Ai (i ε I) and a free algebra.  相似文献   

18.
In this paper, I propose some problems, of topological nature, on the energy functional associated to the Dirichlet problem $$\left\{ \begin{gathered} - \Delta {\kern 1pt} {\kern 1pt} u = f\left( {x,u} \right){\text{in}}\Omega \hfill \\ u_{\left| {\wp \Omega } \right.} = 0 \hfill \\ \end{gathered} \right.$$ Positive answers to these problems would produce innovative multiplicity results on problem (Pf).  相似文献   

19.
The modified Bernstein-Durrmeyer operators discussed in this paper are given byM_nf≡M_n(f,x)=(n+2)P_(n,k)∫_0~1p_n+1.k(t)f(t)dt,whereWe will show,for 0<α<1 and 1≤p≤∞  相似文献   

20.
The backward heat equation is a typical ill-posed problem. In this paper, we shall apply a dual least squares method connecting Shannon wavelet to the following equation ut (x, y, t) = u xx (x, y, t) + uyy (x, y, t), x ∈ R, y ∈ R, 0 ≤ t 1, u(x, y, 1) = (x, y), x ∈ R, y ∈ R. Motivated by Regińska's work, we shall give two nonlinear approximate methods to regularize the approximate solutions for high-dimensional backward heat equation, and prove that our methods are convergent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号