首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We introduce an adaptive system for dynamics recognition. Thereby, an externally presented dynamics (stimulus) is mapped onto a mirror dynamics which is capable to simulate (simulus). A sudden change of the external dynamics leads to an surprisingly quick re-adaptation of the simulus, even if the presented dynamics is chaotic. The system consists of an internal pool of dynamical modules. The modules are forced to the latter dynamics in the sense of Pyragas' control mechanism by the stimulus. The control term, i.e. the strength of forcing, is used as a measure for which modules fit best to the external dynamics. In a sense, this defines a “dynamics-gradient” within the pool. The mirror dynamics now can be constructed by a linear combination of the best fitting modules with weights given by the control term amplitudes. If one adds the so-constructed mirror dynamics to the pool, one has a representation of the corresponding external dynamics within the pool. Later if the same external dynamics is presented again an even quicker adaptation is possible since a well-fitting module is already present. In order not to blow up the dimensionality of the pool, one can eliminate modules that have not been used for a long time. In principle, the modules can undergo an internal control. In addition, one principally can introduce evolution within the pool. Therefore, the system is able to show what sometimes is called a “second cybernetics”, i.e. a hyper-dynamics of the dynamics modules.  相似文献   

2.
A pursuit-evasion differential game with bounded controls and prescribed duration is considered. The evader has two possible dynamics, while the pursuer dynamics is fixed. The evader can change the dynamics once during the game. The pursuer knows the possible dynamics of the evader, but not the actual one. The optimal pursuer strategy in this game is obtained. It is robust with respect to the control of the evader, the order of its dynamics and the time of the mode change. The capture conditions of the game are established and the pursuer capture zone is constructed. An illustrative example of the game is also presented.  相似文献   

3.
根据微循环系统的生理情况,建立了微循环系统动力学非定常、非线性分布参数模型,包括血液动力学、间质动力学、淋巴动力学、蛋白质传输动力学、氧动力学、热量传输动力学和肌原性与代谢性调控过程,综合反映了它们之间的相互作用,并考虑了微动脉自律运动和血液非线性粘弹性的影响.几何模型是一个包括微动脉、开放与储备毛细血管、微静脉、初始淋巴管和微动静脉吻合支的简单网络.这种综合模型有助于临床数据的分析研究和“数值实验手段”的建立.  相似文献   

4.
The pulse energy conversion systems demonstrate a complex dynamics at parameter variations in a wide range. The problem of one-to-one decision-making about system dynamics using a priori information in the form of the parameter diagram is considered. The step-by-step approach to the problem solution based on fractal regularities of the dynamics is proposed. The first stage is the type of motion identification; the second one is the parameter vector identification within this motion type. The parallel and sequential algorithm schemes for this approach realization are presented. The problem of dynamics evolution forecasting is suggested to consider as a pointer to future research.  相似文献   

5.
A mean‐reverting model is proposed for the spot price dynamics of electricity which includes seasonality of the prices and spikes. The dynamics is a sum of non‐Gaussian Ornstein–Uhlenbeck processes with jump processes giving the normal variations and spike behaviour of the prices. The amplitude and frequency of jumps may be seasonally dependent. The proposed dynamics ensures that spot prices are positive, and that the dynamics is simple enough to allow for analytical pricing of electricity forward and futures contracts. Electricity forward and futures contracts have the distinctive feature of delivery over a period rather than at a fixed point in time, which leads to quite complicated expressions when using the more traditional multiplicative models for spot price dynamics. In a simulation example it is demonstrated that the model seems to be sufficiently flexible to capture the observed dynamics of electricity spot prices. The pricing of European call and put options written on electricity forward contracts is also discussed.  相似文献   

6.
A 3D pendulum consists of a rigid body, supported at a fixed pivot, with three rotational degrees of freedom. The pendulum is acted on by a gravitational force. 3D pendulum dynamics have been much studied in integrable cases that arise when certain physical symmetry assumptions are made. This paper treats the non-integrable case of the 3D pendulum dynamics when the rigid body is asymmetric and the center of mass is distinct from the pivot location. 3D pendulum full and reduced models are introduced and used to study important features of the nonlinear dynamics: conserved quantities, equilibria, relative equilibria, invariant manifolds, local dynamics, and presence of chaotic motions. The paper provides a unified treatment of the 3D pendulum dynamics that includes prior results and new results expressed in the framework of geometric mechanics. These results demonstrate the rich and complex dynamics of the 3D pendulum.  相似文献   

7.
Some important problems in coupled fluid-structural dynamics which occur in safety investigations of liquid metal fast breeder reactors (LMFBR), light water reactors and nuclear reprocessing plants are discussed and a classification of solution methods is introduced. A distinction is made between the step by step solution procedure, where available computer codes in fluid and structural dynamics are coupled, and advanced simultaneous solution methods, where the coupling is carried out at the level of the fundamental equations. Results presented include the transient deformation of a two-row pin bundle surrounded by an infinite fluid field, vapour explosions in a fluid container and containment distortions due to bubble collapse in the pressure suppression system of a boiling water reactor. A recently developed simultaneous solution method is presented in detail. Here the fluid dynamics (inviscid, incompressible fluid) is described by a singularity method which reduces the three-dimensional fluid dynamics problem to a two-dimensional formulation. In this way the three-dimensional fluid dynamics as well as the structural (shell) dynamics can be described essentially by common unknowns at the fluid-structural interface. The resulting equations for the coupled fluid-structural dynamics are analogous to the equations of motion of the structural dynamics alone.  相似文献   

8.

The effects of unidirectional dispersal on single pioneer species discrete-time metapopulations where the pre-dispersal local patch dynamics are of the same (compensatory or overcompensatory) or mixed (compensatory and overcompensatory) types are studied. Single-species unidirectional metapopulation models behave as single-species single-patch models whenever all pre-dispersal local patch dynamics are compensatory and the dispersal rate is low. The pioneer species goes extinct in at least one patch when the dispersal rate is high, while it persists when the rate is low. Unidirectional dispersal can generate multiple attractors with fractal basin boundaries whenever the pre-dispersal local patch dynamics are overcompensatory, and is capable of altering the local patch dynamics in mixed systems from compensatory to overcompensatory dynamics and vice versa.  相似文献   

9.
以六轮摇臂-转向架关节式月球车为研究对象,根据其机械原理和结构特点,并参考车辆动力学理论,分析其在崎岖地形中的受力情况,利用Kane方法建立了理想状态下的非线性动力学模型,并基于此模型对月球车进行速度跟踪控制仿真,证实了模型和控制方案的可行性,为设计轨迹跟踪和避障控制器提供依据.  相似文献   

10.
The climate dynamics in Northern Eurasia under the conditions of global climate change is studied based on atmosphere-ocean coupled general circulation models. Feedbacks for some parameters of the atmosphere are assessed and analyzed. The role of the biosphere in the climate dynamics of the 21st century is investigated with allowance for the structure of the surface layer, vegetation layer, soil, and hydrology dynamics. Peculiarities of the dynamics of the North Atlantic and the Arctic Ocean are explored over periods pertaining to various phases of the North Atlantic Oscillation (NAO) index.  相似文献   

11.
The aim of this work is to present a general class of nonlinear discrete time models with two time scales whose dynamics is susceptible of being approached by means of a reduced system. The reduction process is included in the so-called approximate aggregation of variables methods which consist of describing the dynamics of a complex system involving many coupled variables through the dynamics of a reduced system formulated in terms of a few global variables. For the time unit of the discrete system we use that of the slow dynamics and assume that fast dynamics acts a large number of times during it. After introducing a general two-time scales nonlinear discrete model we present its reduced accompanying model and the relationships between them. The main result proves that certain asymptotic behaviours, hyperbolic asymptotically stable (A.S.) periodic solutions, to the aggregated system entail that to the original system.  相似文献   

12.
The basic reproduction number of a fast disease epidemic on a slowly growing network may increase to a maximum then decrease to its equi- librium value while the population increases, which is not displayed by classical homogeneous mixing disease models. In this paper, we show that, by properly keeping track of the dynamics of the per capita contact rate in the population due to population dynamics, classical homogeneous mixing models show simi- lar non-monotonic dynamics in the basic reproduction number. This suggests that modeling the dynamics of the contact rate in classical disease models with population dynamics may be important to study disease dynamics in growing populations.  相似文献   

13.
We show that there exists a projective dynamics of a particle. It underlies intrinsically the classical particle dynamics as projective geometry underlies Euclidean geometry. In classical particle dynamics a particle moves in the Euclidean space subjected to a potential. In projective dynamics the position space has only the local structure of the real projective space. The particle is subjected to a field of projective forces. A projective force is not an element of the tangent bundle to the position space, but of some fibre bundle isomorphic to the tangent bundle. These statements are direct consequences of Appell’s remarks on the homography in mechanics, and are compatible with similar statements due to Tabachnikov concerning projective billiards. When we study Euclidean geometry we meet some particular properties that we recognize as projective properties. The same is true for the dynamics of a particle. We show that two properties in classical particle dynamics are projective properties. The fact that the Keplerian orbits close after one turn is a consequence of a more general projective statement. The fact that the fields of gravitational forces are divergence free is a projective property of these fields.   相似文献   

14.
We consider the dynamics of an unbalanced rubber ball rolling on a rough plane. The term rubber means that the vertical spinning of the ball is impossible. The roughness of the plane means that the ball moves without slipping. The motions of the ball are described by a nonholonomic system reversible with respect to several involutions whose number depends on the type of displacement of the center of mass. This system admits a set of first integrals, which helps to reduce its dimension. Thus, the use of an appropriate two-dimensional Poincaré map is enough to describe the dynamics of our system. We demonstrate for this system the existence of complex chaotic dynamics such as strange attractors and mixed dynamics. The type of chaotic behavior depends on the type of reversibility. In this paper we describe the development of a strange attractor and then its basic properties. After that we show the existence of another interesting type of chaos — the so-called mixed dynamics. In numerical experiments, a set of criteria by which the mixed dynamics may be distinguished from other types of dynamical chaos in two-dimensional maps is given.  相似文献   

15.
In this paper, we discuss modelling and analysis of hybrid systems with physical interaction dynamics. Such systems are typically considered complex and they are modelled using abstractions. Abstractions may, however, unintentionally exclude critical details, leading to partial or false results. Therefore, we study here use of a particle system in modelling and analysis. The novelty of the particle system is that it is designed to reveal interaction dynamics as emergent dynamics; thus, supporting analysis of complex and intricate interaction dynamics with acceptable modelling effort. As the main contribution, we formalize the particle system, and use it to model and analyze hybrid systems, both mechanical and biological, with nontrivial interaction dynamics.  相似文献   

16.
Dynamic stability of a milling process with varying workpiece dynamics is investigated. The milling tool moves along the workpiece with a prescribed feed rate, whereby the contact point shifts. Furthermore, the workpiece dynamics is affected by material removal. The resultant varying workpiece dynamics is taken into account by parametric model order reduction including modal truncation. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
We consider complex dynamical systems showing metastable behavior, but no local separation of fast and slow time scales. The article raises the question of whether such systems exhibit a low-dimensional manifold supporting its effective dynamics. For answering this question, we aim at finding nonlinear coordinates, called reaction coordinates, such that the projection of the dynamics onto these coordinates preserves the dominant time scales of the dynamics. We show that, based on a specific reducibility property, the existence of good low-dimensional reaction coordinates preserving the dominant time scales is guaranteed. Based on this theoretical framework, we develop and test a novel numerical approach for computing good reaction coordinates. The proposed algorithmic approach is fully local and thus not prone to the curse of dimension with respect to the state space of the dynamics. Hence, it is a promising method for data-based model reduction of complex dynamical systems such as molecular dynamics.  相似文献   

18.
We analyse the stability properties of mixed equilibria in 2×2 asymmetric games under evolutionary dynamics. With the standard replicator dynamics these equilibria are stable but not asymptotically stable. We modified the replicator dynamics by introducing players of two types: myopies — like in the standard replicator dynamics — and best responders. The behaviour of the latter is described by a continuos time version of the best reply dynamics. Asymptotic convergence under theModified Replicator Dynamics is proved by identifying a strictly decreasing Ljapunov function. We argue that the finding has important implications to justify the use of economic models with mixed strategy equilibria.  相似文献   

19.
The endoplasmic reticulum (ER) is a major organelle of cells in eukaryotic organisms. The ER that is a polygonal network consisting of tubules and sheets has been known to be extremely dynamic in animal cells. However, understanding about the mechanism underlying ER-network motions is rarely explored. Discovering the type of dynamics that governs the movements of the ER network is essential for gaining insights into the structure and functions of cells. For the first time, this paper shows the evidence of chaotic behavior in the dynamics of the ER network and ER-mitochondrial contacts which were captured by time-lapse microscopy images. The chaotic properties of ER-network dynamics and ER-mitochondrial interactions were quantified using the largest Lyapunov exponent and fractal analysis. The results also suggest that the degree of chaos in ER dynamics reduces after drug treatment. New knowledge about the nonlinear dynamics that gives rise to the complex behavior of the organelles will lead to a new perspective of experimental design, and addressing questions relating to their functions and regulations.  相似文献   

20.
The once abstract notions of dynamical chaos now appear naturally in various systems [Kaplan D, Glass L. Understanding nonlinear dynamics. New York: Springer; 1995]. As a result, future trajectories of the systems may be difficult to predict. In this paper, we demonstrate the appearance of chaotic dynamics in model human communities, which consist of producers of agricultural product and producers of agricultural equipment. In the case of a solitary community, the horizon of predictability of the human population dynamics is shown to be dependent on both intrinsic instability of the dynamics and the chaotic attractor sizes. Since a separate community is usually a part of a larger commonality, we study the dynamics of social systems consisting of two interacting communities. We show that intercommunity barter can lead to stabilization of the dynamics in one of the communities, which implies persistence of stable equilibrium under changes of the maximum value of the human population growth rate. However, in the neighboring community, the equilibrium turns into a stable limit cycle as the maximum value of the human population growth rate increases. Following an increase in the maximum value of the human population growth rate leads to period-doubling bifurcations resulting in chaotic dynamics. The horizon of predictability of the chaotic oscillations is found to be limited by 5 years. We demonstrate that the intercommunity interaction can lead to the appearance of long-period harmonics in the chaotic time series. The period of the harmonics is of order 100 and 1000 years. Hence the long-period changes in the population size may be considered as an intrinsic feature of the human population dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号