共查询到12条相似文献,搜索用时 46 毫秒
1.
采用考虑粒子温度各向异性热等离子体介电张量模型,借助磁化、均匀密度分布等离子体中电磁波的一般色散关系,在低磁场、低气压螺旋波等离子体典型参量条件下,理论分析了电子温度各向异性对电磁模式传播特性和角向对称模功率沉积的影响.研究结果表明:对于给定的纵向静磁场B0(或波频率ω),存在一个临界波频率ωcr(或纵向静磁场B0,cr),当ω>ωcr(或B00,cr)时,电子回旋谐波遭受的阻尼开始显著增大;相比粒子温度各向同性情形,粒子温度各向异性彻底改变了波的传播特性,即相位常数和衰减常数均出现峰值现象;在考虑电子有限拉莫尔半径效应和电子温度各向异性情形下,Trivelpiece-Gould (TG)波碰撞阻尼在整个电磁波功率沉积中占据主导地位,电子纵向温度Te,//存在某一临界值,在此临界值处TG波功率沉积出现峰值Pabs,TG,且随着Te,⊥/Te,//的减小,... 相似文献
2.
采用一般的径向密度非均匀分布假设,借助温等离子体介电张量模型,利用磁化等离子体中电磁波的一般色散关系,在高密度峰值、低磁场、低气压典型参量条件下,重点分析了电子温度各向异性对螺旋波m=1角向模功率沉积特性的影响.研究结果表明:在典型螺旋波等离子体电子温度范围(3, 8) e V内,电子有限拉莫尔半径效应应当予以考虑,而离子有限拉莫尔半径效应可以忽略.低磁场条件下|n|> 1次回旋谐波对介电张量元素的贡献可以忽略.碰撞阻尼在功率沉积中占据主导地位,功率沉积在偏离等离子体柱中心轴的某一径向位置出现峰值,随着轴向电子温度Te, z的增大,功率沉积强度逐渐增强.相比等离子体温度各向同性情形,等离子体温度各向异性显著改变了螺旋波m=1角向模的功率沉积特性,电子温度各向异性因子χ=Te,⊥/Te, z的增大或减小均导致功率沉积强度发生剧烈改变. 相似文献
3.
Protopappas VC Kourtis IC Kourtis LC Malizos KN Massalas CV Fotiadis DI 《The Journal of the Acoustical Society of America》2007,121(6):3907-3921
The use of guided waves has recently drawn significant interest in the ultrasonic characterization of bone aiming at supplementing the information provided by traditional velocity measurements. This work presents a three-dimensional finite element study of guided wave propagation in intact and healing bones. A model of the fracture callus was constructed and the healing course was simulated as a three-stage process. The dispersion of guided modes generated by a broadband 1-MHz excitation was represented in the time-frequency domain. Wave propagation in the intact bone model was first investigated and comparisons were then made with a simplified geometry using analytical dispersion curves of the tube modes. Then, the effect of callus consolidation on the propagation characteristics was examined. It was shown that the dispersion of guided waves was significantly influenced by the irregularity and anisotropy of the bone. Also, guided waves were sensitive to material and geometrical changes that take place during healing. Conversely, when the first-arriving signal at the receiver corresponded to a nondispersive lateral wave, its propagation velocity was almost unaffected by the elastic symmetry and geometry of the bone and also could not characterize the callus tissue throughout its thickness. In conclusion, guided waves can enhance the capabilities of ultrasonic evaluation. 相似文献
4.
提出谱有限元方法研究层状各向异性复合板中导波的色散特性和波结构。基于三维弹性动力学方程,用有限元方法离散波导截面,波传播方向的位移用简谐波表示,得到了导波色散的特征方程。分析了单层和双层复合板中导波沿不同方向传播的色散特性和波结构,讨论了双层复合板中层厚比对相速度的影响。数值研究结果表明:导波的对称模态沿纤维方向传播时在较宽的频率范围内保持弱色散状态。双层复合板中导波基本模态的相速度在低频时受层厚比的影响较明显,随着频率的增加趋向于相速度较低的材料。数值模拟结果为导波用于复合材料定量无损检测和性能评价提供理论依据。 相似文献
5.
The purpose of this research is to develop an effective model of the transient laser-generated guided waves in bonded plates by the finite element (FE) method. The FE parameters, such as the mesh density and the time step size, which are related to wave propagation, are optimized in order to set up a standard, and the correlation between these parameters is discussed. The waveforms in bonded plates with different bonded interface modeled by the spring model are obtained and then compared. The results show that the transient responses are sensitive to the stiffness coefficients characterizing the cohesive quality. Finally, these FE results are compared with analytical and experimental results. All these comparisons confirm the accuracy of the FE method for modeling laser-generated guided waves in bonded plates. 相似文献
6.
Hosten B Moreau L Castaings M 《The Journal of the Acoustical Society of America》2007,121(6):3409-3417
The paper presents a Fourier transform-based signal processing procedure for quantifying the reflection and transmission coefficients and mode conversion of guided waves diffracted by defects in plates made of viscoelastic materials. The case of the S(0) Lamb wave mode incident on a notch in a Perspex plate is considered. The procedure is applied to numerical data produced by a finite element code that simulates the propagation of attenuated guided modes and their diffraction by the notch, including mode conversion. Its validity and precision are checked by the way of the energy balance computation and by comparison with results obtained using an orthogonality relation-based processing method. 相似文献
7.
骨折长骨中超声导波传播特性的仿真研究 总被引:4,自引:1,他引:4
采用超声导波评价长骨骨折已成为近两年来的一个研究热点.本文采用混合边界元方法(HBEM)对超声导波在骨裂长骨中的传播情况以及各导波模式的反射系数和透射系数进行了数值分析.研究结果表明,入射导波模式经由裂纹处模式转换后依然保持为主要接收模式不变.对某一裂纹,各模式透射系数常在相近的频率点上达到局部峰值.对于不同深宽比(d/w)裂纹,某些模式透射系数曲线局部峰值所对应的频率存在着相互错开的现象,这些结果可用于选择最优入射导波模式和频率,以便更好地定量评价骨质以及骨裂状况. 相似文献
8.
Quantitative ultrasound for bone assessment is based on the correlations between ultrasonic parameters and the properties (mechanical and physical) of cancellous bone. To elucidate the correlations, understanding the physics of ultrasound in cancellous bone is demanded. Micro-scale modeling of ultrasound propagation in cancellous bone using the finite-difference time-domain (FDTD) method has been so far utilized as one of the approaches in this regard. However, the FDTD method accompanies two disadvantages: staircase sampling of cancellous bone by finite difference grids leads to generation of wave artifacts at the solid–fluid interface inside the bone; additionally, this method cannot explicitly satisfy the needed perfect-slip conditions at the interface. To overcome these disadvantages, the finite element method (FEM) is proposed in this study. Three-dimensional finite element models of six water-saturated cancellous bone samples with different bone volume were created. The values of speed of sound (SOS) and broadband ultrasound attenuation (BUA) were calculated through the finite element simulations of ultrasound propagation in each sample. Comparing the results with other experimental and simulation studies demonstrated the capabilities of the FEM for micro-scale modeling of ultrasound in water-saturated cancellous bone. 相似文献
9.
In this paper, an approximate power flow model is developed for the analysis of the flexural waves in finite orthotropic plate transversely vibrating in the medium-to-high frequency ranges. The derived energy equation for the model is expressed with time- and locally space-averaged farfield wave energy density. It could be the more general form than that of the conventional power flow analysis model seen in the isotropic plate. With the derived model, dynamic characteristics varying with the direction can be expressed. To verify the validity and accuracy of the model, numerical analyses are performed for the case where a finite rectangular plate is excited by a harmonic point force, and the calculated results expressed with the energy levels are compared with classical modal solutions by changing the frequency and the damping loss factor of the plate. The dominant power transmission paths in the plate are also predicted from the distribution of the approximate intensity fields. 相似文献
10.
This paper deals with the numerical modeling of transient mechanical waves in linear viscoelastic solids. Dissipation mechanisms are described using the generalized Zener model. No time convolutions are required thanks to the introduction of memory variables that satisfy local-in-time differential equations. By appropriately choosing the relaxation parameters, it is possible to accurately describe a large range of materials, such as solids with constant quality factors. The evolution equations satisfied by the velocity, the stress, and the memory variables are written in the form of a first-order system of PDEs with a source term. This system is solved by splitting it into two parts: the propagative part is discretized explicitly, using a fourth-order ADER scheme on a Cartesian grid, and the diffusive part is then solved exactly. Jump conditions along the interfaces are discretized by applying an immersed interface method. Numerical experiments of wave propagation in viscoelastic and fluid media show the efficiency of this numerical modeling for dealing with challenging problems, such as multiple scattering configurations. 相似文献
11.
《Journal of computational physics》2003,184(2):476-497
We review the methods available for large deformation simulations of geomaterials before presenting a Lagrangian integration point finite element method designed specifically to tackle this problem. In our Ellipsis code, the problem domain is represented by an Eulerian mesh and an embedded set of Lagrangian integration points or particles. Unknown variables are computed at the mesh nodes and the Lagrangian particles carry history variables during the deformation process. This method is ideally suited to model fluid-like behavior of continuum solids which are frequently encountered in geological contexts. We present benchmark examples taken from the geomechanics area. 相似文献