首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 73 毫秒
1.
行程时间的波动性分析及预测是道路交通网络研究的重要内容,为有效预测出行者行程时间,本文基于实际路段行程时间数据构建随机波动率模型,利用马尔科夫链蒙特卡洛方法求解模型参数,使用标准随机波动率(SV-N)模型和厚尾随机波动率(SV-T)模型对行程时间进行预测。结果表明:在刻画对路段行程时间波动率特征的效果上,厚尾随机波动率模型优于标准随机波动率模型;在行程时间预测上,厚尾随机波动率模型更能准确地进行实时预测。本文方法对行程时间预测具有实时性,可对实际路段行程时间进行在线预测及对交通出行者的路线规划提供理论依据。  相似文献   

2.
交通流微观模型与宏观模型的统一   总被引:7,自引:0,他引:7  
以改进的微观跟车模型为基础,利用交通注稳态特性和概率统计方法得出了交通流宏观统计模型,首次在严格理论意义上使交通流微观模型和宏观统计模型得到了统一,所得的宏观统计模型在许多方面优于传统的经验回归模型。  相似文献   

3.
针对差分自回归移动平均(Auto-Regressive Integrated Moving Average,ARIMA)模型在获得时间序列非线性特性中的局限,基于线性递归的ARIMA模型和非线性递归的广义自回归条件异方差一均值(Generalized Autoregressive Conditional Heteroscedasticity in Mean,GARCHM)模型,提出一种组合模型ARIMA-GARCH-M进行短时交通流预测,并利用城市快速路交通流数据进行模型预测精度的检验.结果表明:ARIMA-GARCH-M模型考虑了异方差性这一非线性特性,相比于ARIMA-SVR模型和ARIMA-GARCH模型的预测结果,本文构建模型具有较好的预测效果,能够有效提高预测精度至90.39%.  相似文献   

4.
针对应急车辆通行时交通流参数难以实时获取的问题,提出以仿真手段模拟交通运行,进而探讨随机交通条件下应急车辆行程时间的计算。在分析有应急车辆的混合交通流运行特性的基础上,增加车辆类型,引入应急车辆影响区域和普通车辆让行概率2个参数,修改车辆换道与速度更新规则,建立了双车道交通流元胞自动机模型。利用MATLAB进行数值模拟,生成不同交通密度条件下的应急车辆行程时间,并与现有计算公式进行对比分析。研究结果表明:应急车辆仅干扰其所处位置的车流运行,对双车道总体流量没有影响,在密度位于0.12~0.36范围内优先通行效果较好;在密度较小(≤0.08)或较大(≥0.24)时,应急车辆行程时间随着行驶距离的增加呈现近似正比例的增加,且密度越大,增长的斜率越大。研究发现现有针对应急车辆的距离-行程时间函数适用于低密度及高密度交通条件,而在0.12~0.20密度范围内失去效用。  相似文献   

5.
基于卡尔曼滤波的高速道路行程时间动态预测   总被引:12,自引:0,他引:12  
首先介绍了卡尔曼滤波的算法,并定性说明了其优点-动态性、实时性。然后使用卡尔曼滤波法和传统的预测方法分别对同一观测数据进行了观测和对比,从而定量证明了卡尔曼滤波的高精度性,研究成果对于开发交通信息诱导系统和动态交通分配均具有较大的意义。  相似文献   

6.
高速公路交通流宏观模型的分段辨识算法   总被引:1,自引:0,他引:1  
分别采用RBF神经网络和最小二乘法对高速公路交通流宏观模型进行分段辨识,成功地解决了该模型辨识的工程化问题,并与传统的复合形法进行了比较,仿真效果令人满意。  相似文献   

7.
城市道路交通环境复杂多变,城市道路行程时间具有较强的非线性与非稳定性,为提高城市道路行程时间的预测精度,提出了基于变分模态分解(variational mode decomposition,VMD)与门控循环单元(gated recurrent unit,GRU)相结合的组合预测模型。与传统分解算法相比,VMD拥有非递归求解和自主选择模态个数的优点。首先利用变分模态分解算法将原始行程时间序列分解为若干时间子序列,降低原始序列的非平稳性;然后对每个时间子序列建立GRU预测模型;最后将各个预测结果进行融合,得到行程时间序列预测的最终结果。实验结果表明,变分模态分解与门控循环单元结合的组合模型预测结果要比对照组的单一模型预测结果精准度高,均方根误差(root mean squared Error,RMSE)及下降约3.99~4.37,平均绝对误差(mean absolute error,MAE)下降约3.02~3.35;在组合预测模型中,门控循环单元(GRU)预测效果要比长短期记忆(long short-term memory,LSTM)预测效果表现更佳,均方根误差(root mean squared error,RMSE)下降0.34,平均绝对误差(mean absolute error,MAE)下降0.22。  相似文献   

8.
针对单一模型无法深入挖掘交通流复杂的线性和非线性特征方面的局限性以及神经网络模型在训练时收敛速度缓慢等问题,提出了一种基于SARIMA-GA-Elman的组合预测模型.该组合模型有效地融合了季节性差分自回归滑动平均(seasonal autoregressive integrated moving average,SARIMA)模型良好的线性拟合能力和Elman递归神经网络强大的非线性映射能力;在预测过程中首先基于SARIMA滚动预测时间序列的线性分量,然后使用SARIMA模型的预测误差序列建立Elman-RNN构建非线性误差模型;此外在训练非线性误差模型的过程中使用经过二进制编码的遗传算法(genetic algorithm,GA)优化Elman-RNN,旨在提升Elman-RNN的训练效率,最后把两个模型的预测结果加权组合得到最终的预测值.实验结果表明,该组合模型在预测精度和鲁棒性方面相比单一模型都有较为明显的提升.  相似文献   

9.
城市交通流路段行程时间预测模型   总被引:1,自引:0,他引:1  
建立较为精确的城市交通流路段行程时间预测模型是建立诱导系统的关键 .本文所建的预测模型充分考虑了交通延误变化的灵敏性 ,将汽车在路段上的运行时间分为两部分 ,分别预测 .经过实测数据检验 ,该模型具有很好的效果 .  相似文献   

10.
城市快速路实时交通状态估计和行程时间预测   总被引:2,自引:1,他引:1  
根据城市快速路交通诱导和监控系统的实际需要,提出了实时估计和预测城市快速路上交通状态和任意两点间动态行程时间的方法.其基本思想是将扩展卡尔曼滤波理论引入宏观动态交通流模型,结合快速路上的固定检测设备,实时估计和预测未来几个时段的交通状态,并利用“虚拟车”法预测动态的行程时间.通过对上海市快速路典型实测数据的实例分析,发现交通状态估计模型具有良好的跟踪能力,行程时间预测模型在畅通状态计算结果和实测结果几乎完全重合,拥挤状态相对误差基本维持在10%以下.结果表明,该模型的适用性和精度都令人满意,可为城市快速路交通控制和诱导提供依据.  相似文献   

11.
12.
提出了基于随机松弛时间的行程时间可靠性动态计算模型。研究了交通系统内部车辆间相互干扰作用对行程时间可靠性的影响。运用交通流动力学理论建立模型,证明了模型的各项异性,并基于蒙特卡洛和欧拉折现法设计相应的求解算法。模型能够较好地反映给定交通供需条件下的行程时间可靠性退化规律,量化交通流内部车辆间相互干扰对行程时间可靠性的影响。算例分析表明车辆间相互干扰程度的加剧会引起行程时间可靠性退化轨迹的明显改变,干扰越剧烈,动态行程时间可靠性的退化速度越快、达到稳定状态时的行程时间可靠性水平越低。拓展了传统行程时间可靠性计算模型仅考虑外部供需的局限性,探讨了交通流松弛时间的随机波动对行程时间可靠性的影响。所建模型和方法可以为高速公路、城市快速路、主干道等大型设施的动态行程时间可靠性预测提供理论依据和实践参考。  相似文献   

13.
应用交通流宏观连续模型,模拟上下游信号灯作异步周期变化的协调信号灯路段的交通流动,经数值计算比较,选择改进Murman格式求解.结果表明:改进Murman格式能准确捕捉交通流中无振荡“激波”位置.  相似文献   

14.
为检验灰色模型及径向神经网络模型用于短时交通流预测的可行性及适用性,本文分析和比较了灰色模型GM(1,1)和RBF径向神经网络模型对短时交通流的预测效果。仿真实例表明,灰色模型不适合用于短时交通流预测,而径向神经网络能够准确预测短期交通流的未来变化趋势,当径向基函数的分布密度值在0.8~1.0之间时能够取得较高的预测精度。  相似文献   

15.
基于人工神经网络城市交通流量智能预测的研究   总被引:5,自引:0,他引:5  
通过对我国目前城市交通情况的分析.说明交通拥挤和流量大小息息相关,因此对城市交通流量进行预测具有重要的意义。目前应用于城市交通流量智能预测的人工神经网络模型主要有线性网络、BP网络、反馈网络等。经过综合分析而采用了线性网络对城市交通流量进行预测,其优点主要表现在结构简单,实用方便,反应速度快,实时性强。根据城市交通的具体情况,对城市交通流量的预测模型进行了仿真。其仿真结果表明所采用的线性神经网络能够用于城市交通流量的预测。  相似文献   

16.
针对目前短时交通流预测算法多考虑交通流的低维信息特征,导致无法满足预测精准度要求等问题,引入高精度低秩张量填充理论(HALRTC),构建基于周、天、时段等多时间维度的动态张量模型,设计了一种融合高维交通流特征的短时交通流预测算法,并以京港澳高速公路杜家坎路段交通流速度数据为例进行实证验证。研究结果显示,算法能够基于较少历史数据较快达到良好预测效果,可有效实现针对工作日与非工作日的交通流预测,平均绝对误差(MAE)平均值约为3.6%,并能及时跟踪交通流波动性。在缺失数据情况下,所提出算法预测精度随数据缺失比例增大而降低,但相较于3种经典预测算法可表现出更好的预测精度。  相似文献   

17.
灰色系统理论在无检测器交叉口交通流量预测中的应用   总被引:1,自引:0,他引:1  
为解决一般预测方法要求原始数据量较大,而无检测器交叉口所能获得的交通流量数据又非常有限的矛盾,提出了利用灰色系统理论预测无检测交叉口交通流通的方法,并建立了一种新的自适应GM(1,1)模型,利用编制的计算机程序对常熟市无检测器交叉口交通流量进行预测计算分析,结果表明自适应GM(1,1)模型可以根据有限的交通流量数据进行预测,且预测精度较之全数据GM(1,1)模型有显著提高,实践证明,该方法是有效的。  相似文献   

18.
交通流序列多为单步预测.为实现交通流序列的多步预测,提出一种基于编码器解码器(encoder-decoder,ED)框架的长短期记忆网络(long short-term memory,LSTM)模型,即ED LSTM模型.将自回归滑动平均、支持向量回归机、XGBOOST、循环神经网络、卷积神经网络、LSTM作为对照组进行实验验证.实验结果表明,当预测时间步长增加时,ED框架能够减缓模型性能的下降趋势,LSTM能够充分挖掘时间序列中的非线性关系.除此之外,在单变量输入的情况下,在PEMS-04数据集上,当预测时间步长为t+1到t+12的12个时间步时,ED LSTM模型的均方根误差(root mean squard error,RMSE)及平均绝对误差(mean absolute error,MAE)分别下降0.210~5.422、0.061~0.191.相较于单因素输入,多因素输入的ED LSTM模型在12个预测时间步长下,RMSE、MAE分别下降0.840、0.136.实验证明了ED LSTM模型能够有效地用于交通流序列的多步及单因素、多因素预测任务.  相似文献   

19.
为对交通流进行多步预测,支持智能交通系统的长期决策任务,一种基于编码器-解码器(encoder-decoder,ED)的卷积神经网络(convolutional neural networks,CNN)-门循环单元(gate recurrent unit, GRU)模型,简称ED CNN-GRU。首先使用CNN作为编码器,对交通流序列进行信息捕捉,再将上述信息通过GRU解码器进行解释并输出。实验证明,对比CNN、GRU单个模型,ED框架有效解决了误差的迅速累积问题。对比其他基准模型,CNN、 GRU模型对于交通流序列的特征提取及解释能力较为优秀。对于未来12个步长的交通流量预测任务,对比其他基准模型,单因素输入情况的ED CNN-GRU模型的均方根误差下降约0.344~6.464,平均绝对误差下降约0.192~0.425。对比单因素输入,多因素输入下ED CNN-GRU模型拥有更好的预测能力。证明了ED CNN-GRU模型在不同输入维度的多步交通流预测中任务中均具有良好的预测能力,为数据获取条件不同的城市提供了一个支持单因素及多因素输入情况的多步交通流预测模型。  相似文献   

20.
针对路网的拓扑信息不完整而无法实现时空结合交通流预测的情况,提出了一种基于时间序列预测模型联合数据编解码机制的预测方法。对路网内路段交通流数据进行编码得到路网信息的链状结构,以此获取路网结构中的拓扑信息;通过时序模型对链状结构进行交通流预测,完成对链状结构的时序特征提取;最终,通过解码方法得到路网的时空交通流预测结果。采用GPS数据,选取不同路网进行对比实验,引入数据编解码的时空交通流预测方法与时间序列模型进行比较,并且与基线模型HA和ARIMA展开了对比实验。实验结果表明:深度学习模型引入数据编解码机制后,模型性能明显提升;引入数据编解码机制的深度学习模型的性能比基线模型的性能更优越。该方法仅仅使用简单的时间序列深度网络再联合数据的编解码机制即可实现时空结合的交通流预测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号