首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Gold nanoparticles functionalized with Gd(3+) chelates displaying fast water exchange, superb pH stability and inertness towards transmetalation with Zn(2+) have been prepared and characterized as a new high relaxivity (29 mM(-1) s(-1), 30 MHz, 25 °C) contrast agent potentially safe for in vivo MRI applications. The Lipari-Szabo treatment for internal rotation was used to evaluate the effect of linker flexibility on the relaxivity of the gold nanoparticles. The effect of fast water exchange on the relaxivity of gold nanoparticles functionalized with Gd(3+) chelates is also addressed in this communication.  相似文献   

2.
A DTPA-based chelate containing one phosphinate group was conjugated to a generation 5 polyamidoamine (PAMAM) dendrimer via a benzylthiourea linkage. The Gd(III) complex of this novel conjugate has potential as a contrast agent for magnetic resonance imaging (MRI). The chelates bind Gd3+via three nitrogen atoms, four carboxylates and one phosphinate oxygen, and one water molecule completes the inner coordination sphere. The monomer Gd(III) chelates bearing nitrobenzyl and aminobenzyl groups ([Gd(DTTAP-bz-NO2)(H2O)]2- and [Gd(DTTAP-bz-NH2)(H2O)]2-) as well as the dendrimeric Gd(III) complex G5-(Gd(DTTAP))63) were studied by multiple-field, variable temperature 17O and 1H NMR. The rate of water exchange is faster than that of [Gd(DTPA)(H2O)]2- and very similar on the two monomeric complexes (8.9 and 8.3 x 10(6) s-1 for [Gd(DTTAP-bz-NO2)(H2O)]2- and [Gd(DTTAP-bz-NH2)(H2O)]2-, respectively), while it is decreased on the dendrimeric conjugate (5.0 x 10(6) s-1). The Gd(III) complex of the dendrimer conjugate has a relaxivity of 26.8 mM-1 s-1 at 37 degrees C and 0.47 T (corresponding to 1H Larmor frequency of 20 MHz). Given the contribution of the second sphere water molecules to the overall relaxivity, this value is slightly higher than those reported for similar size dendrimers. The experimental 17O and 1H NMR data were fitted to the Solomon-Bloembergen-Morgan equations extended with a contribution from second coordination sphere water molecules. The rotational dynamics of the dendrimeric conjugate was described in terms of global and local motions with the Lipari-Szabo approach.  相似文献   

3.
One essential requirement for more sensitive gadolinium-based MRI contrast agents is to slow the molecular tumbling of the gadolinium(III) ion, which increases the gadolinium's relaxivity (i.e., its ability to speed up the NMR relaxation of nearby water molecules). One route to this is through conjugation to high-molecular-weight polymers such as dendrimers. In this work, amine-functionalized TREN-bis(1,2-HOPO)-TAM-ethylamine and TREN-bis(1-Me-3,2-HOPO)-TAM-ethylamine ligands have been synthesized and attached to biocompatible 40 kDa esteramide (EA)- and poly-l-lysine (PLL)-based dendrimers capable of binding up to eight gadolinium complexes. These conjugates have T(1) relaxivities of up to 38.14 ± 0.02 mM(-1) s(-1) per gadolinium at 37 °C, corresponding to relaxivities of up to 228 mM(-1) s(-1) per dendrimer molecule. This relaxivity expressed on a "per Gd" basis is several times that of the small-molecule complexes and an order of magnitude higher than that of current commercial agents. Because of their high performance and low toxicity, these macromolecules may constitute an attractive complement to currently available gadolinium(III)-based contrast agents.  相似文献   

4.
Two gadolinium(III) chelates, GdNP-DO3A (1-methlyene-(p-NitroPhenol)-1,4,7,10-tetraazacycloDOdecane-4,7,10-triAcetate) and GdNP-DO3AM (1-methlyene(p-NitroPhenol)-1,4,7,10-tetraazacycloDOdecane-4,7,10-triacetAMide), containing a single nitrophenolic pendant arm plus either three acetate or three amide pendant arms were synthesized and characterized. The properties of the gadolinium, terbium, and dysprosium complexes of these ligands were examined as a function of pH. The extent and mechanism of the changes in water relaxivity with pH of each gadolinium complex was found to differ substantially for the two complexes. The water relaxivity of Gd(NP-DO3A) increases from 4.1 mM(-1) s(-1) at pH 9 to 7.0 mM(-1) s(-1) at pH 5 as a result of acid-catalyzed dissociation of the nitrophenol from the lanthanide. The nitrophenol group in Gd(NP-DO3AM) does not dissociate from the metal center even at pH 5; therefore, the very modest increase in relaxivity in this complex must be ascribed to an increase in prototropic exchange rate of the bound water and/or phenolic protons.  相似文献   

5.
Gadolinium (Gd)-based cancer therapeutic liposomes can be used for chemotherapeutics and diagnostics. In this study, dual functional liposomes co-encapsulating doxorubicin (Dox) and Gd were prepared by Dox-transition metal complexation. Preparation conditions were optimized to obtain liposomes containing high concentrations of Dox and Gd. The optimized liposomes Gd250 co-encapsulated 3.6 mM of Dox and 1.9 mM of Gd. The magnetic resonance (MR) properties of Gd250 liposomes were determined using a 4.7 T MR system. Cellular uptake of Dox was determined using a flow cytometer and a confocal microscopy and that of Gd was measured using an inductively coupled plasma-atomic emission spectrometer. Although encapsulated Gd exhibited lower relaxivity than MRbester?, which is widely used for clinical diagnosis, because of limited diffusion across the liposome membrane, Gd250 liposomes showed much higher cellular uptake than that of MRbester?. In Gd250 liposomes, Gd was highly accumulated in B16F10 cells, which could provide improved contrast sensitivity for molecular imaging. Additionally, in Gd250 liposomes, Dox was highly internalized, which could enhance its cancer therapeutic effects. Consequently, we suggest that dual functional liposomes can be used as therapeutic and diagnostic carriers.  相似文献   

6.
Do not tumble dry: Gadolinium-DOTA encapsulated into polysaccharide nanoparticles (GdDOTA?NPs) exhibited high relaxivity (r(1) =101.7?s(-1) mM(-1) per Gd(3+) ion at 37?°C and 20?MHz). This high relaxation rate is due to efficient Gd loading, reduced tumbling of the Gd complex, and the hydrogel nature of the nanoparticles. The efficacy of the nanoparticles as a T(1) /T(2) dual-mode contrast agent was studied in C6 cells.  相似文献   

7.
The factors limiting the relaxivity (r) of MRI contrast agents based on small (~2.0 nm) gold nanoparticles functionalised with paramagnetic chelates were explored using EPR spectroscopy. The EPR analysis suggested that nanoparticle-attached chelates exhibit relatively high tumbling rates which restrict their relaxivity. Two different strategies were employed in order to test this hypothesis and hence improve the relaxivity of the nanoparticle-based contrast agents. In the first approach, the particle diameter was increased. This resulted in lower surface curvature and hence tighter ligand packing, which in turn led to increased relaxivity. In the second approach, the nanoparticles were overcoated with multilayers of oppositely charged polyelectrolytes. The restricted motion of Gd(3+) chelates coated by 2-4 polymer layers led to increased relaxivity which was dramatically reduced for thicker layers, presumably due to restricted diffusion of water molecules.  相似文献   

8.
Intracellular Ca(2+) plays an important role in signal transduction, and we are developing new MRI techniques to study its regulation in living animals. We have reported on an MRI contrast agent (DOPTA-Gd) where the relaxivity of the complex is controlled by the presence or absence of the divalent ion Ca(2+). By structurally modulating inner-sphere access of water to a chelated Gd(3+) ion, we observe a substantial and reversible change in T(1) upon the addition of Ca(2+) and not other divalent ions. Luminescence lifetime and NMRD measurements of the complex have been acquired, and several parameters contribute to the Ca(2+) dependent relaxivity change of DOPTA-Gd. The number of inner-sphere water molecules is more than doubled after the Ca(2+) concentration is increased. This finding strongly supports the proposed conformational change of DOPTA-Gd when Ca(2+) is bound. Relaxometric measurements confirm these results and provide an indication that second-sphere water molecules are probably responsible for paramagnetic relaxation enhancement in the absence of Ca(2+). After Ca(2+) is bound to DOPTA-Gd, the molecule undergoes a substantial conformational change that opens up the hydrophilic face of the tetraazacyclododecane macrocycle. This change dramatically increases the accessibility of chelated Gd(3+) ion to bulk solvent. The design of this class of calcium-activated MR contrast agent was based primarily on the assumption that the number of coordinated inner-sphere water molecules would be the dominating factor in observed relaxivity measurements. This result has been confirmed; however, careful mechanistic studies reveal that additional factors are involved in this process.  相似文献   

9.
Dextran-poly(glycidyl methacrylate)(Dex-PGMA) nano-suitcases were synthesized efficiently via a graft copolymerization induced self-assembly(GISA) approach. On this basis, the Dex-PGMA nano-suitcases were modified with hydrazide, and the attachment of multiple chelated Gd(Ⅲ) ions to the interior of the nano-suitcases affords nanoscale MRI contrast agents with high relaxivity values. The highly fenestrated dextran shell of the nano-suitcases assures water exchange which readily occurs between the surrounding environment and the Gd(Ⅲ) ions encapsulated within the hybrid nano-suitcases. The complexation between the hydrophilic hydrazide interior of the nano-suitcases and Gd(Ⅲ) ions results in an impressive Gd payload at 22.6 wt% in the hybrid nano-suitcases. The longitudinal relaxivity(r1) of the hybrid nano-suitcases is reported as 44.4 L/(mmol·s), which is 9-14 folds of that of commercial Gd-DTPA agents. In vivo MRI studies demonstrate that the hybrid nano-suitcases accumulated in the lymph node of the rat due to their nanoscale dimensions and displayed strong signals in vivo. The results indicated that the hybrid nano-suitcases provide a promising platform for the diagnosis of lymph node related diseases.  相似文献   

10.
11.
High relaxivity macromolecular contrast agents based on the conjugation of gadolinium chelates to the interior and exterior surfaces of MS2 viral capsids are assessed. The proton nuclear magnetic relaxation dispersion (NMRD) profiles of the conjugates show up to a 5-fold increase in relaxivity, leading to a peak relaxivity (per Gd3+ ion) of 41.6 mM(-1) s(-1) at 30 MHz for the internally modified capsids. Modification of the exterior was achieved through conjugation to flexible lysines, while internal modification was accomplished by conjugation to relatively rigid tyrosines. Higher relaxivities were obtained for the internally modified capsids, showing that (i) there is facile diffusion of water to the interior of capsids and (ii) the rigidity of the linker attaching the complex to the macromolecule is important for obtaining high relaxivity enhancements. The viral capsid conjugated gadolinium hydroxypyridonate complexes appear to possess two inner-sphere water molecules (q = 2), and the NMRD fittings highlight the differences in the local motion for the internal (tauRl = 440 ps) and external (tauRl = 310 ps) conjugates. These results indicate that there are significant advantages of using the internal surface of the capsids for contrast agent attachment, leaving the exterior surface available for the installation of tissue targeting groups.  相似文献   

12.
A novel ligand, H(12)L, based on a trimethylbenzene core bearing three methylenediethylenetriamine-N,N,N',N'-tetraacetate moieties (-CH(2)DTTA(4-)) for Gd(3+) chelation has been synthesized, and its trinuclear Gd(3+) complex [Gd(3)L(H(2)O)(6)](3-) investigated with respect to MRI contrast agent applications. A multiple-field, variable-temperature (17)O NMR and proton relaxivity study on [Gd(3)L(H(2)O)(6)](3-) yielded the parameters characterizing water exchange and rotational dynamics. On the basis of the (17)O chemical shifts, bishydration of Gd(3+) could be evidenced. The water exchange rate, k(ex)(298)=9.0+/-3.0 s(-1) is around twice as high as k(ex)(298) of the commercial [Gd(DTPA)(H(2)O)](2-) and comparable to those on analogous Gd(3+)-DTTA chelates. Despite the relatively small size of the complex, the rotational dynamics had to be described with the Lipari-Szabo approach, by separating global and local motions. The difference between the local and global rotational correlation times, tau(lO)(298)=170+/-10 ps and tau(gO)(298)=540+/-100 ps respectively, shows that [Gd(3)L(H(2)O)(6)](3-) is not fully rigid; its flexibility originates from the CH(2) linker between the benzene core and the poly(amino carboxylate) moiety. As a consequence of the two inner-sphere water molecules per Gd(3+), their close to optimal exchange rate and the appropriate size and limited flexibility of the molecule, [Gd(3)L(H(2)O)(6)](3-) has remarkable proton relaxivities when compared with commercial contrast agents, particularly at high magnetic fields (r(1)=21.6, 17.0 and 10.7 mM(-1)s(-1) at 60, 200 and 400 MHz respectively, at 25 degrees C; r(1) is the paramagnetic enhancement of the longitudinal water proton relaxation rate, referred to 1 mM concentration of Gd(3+)).  相似文献   

13.
A tetranuclear gadolinium(III) complex, [Gd4(H2O)8], of DO3A appended onto the pentaerythrityl framework was synthesized to improve the water proton relaxivity for MRI application. The longitudinal relaxivity of [Gd4(H2O)8] is 28.13 mM-1 s-1 (24 MHz, 35+/-0.1 degrees C, pH 5.6) which is 5.86 times higher than that of [Gd(DO3A)(H2O)2]. The relaxivity is based on "molecular" relaxivity of the tetramer and the r1p value is "7 per Gd". The high relaxivity of the tetramer is the result of the decrease in the rotational correlation (tauR) and the presence of eight inner-sphere water molecules (q=8). The complex exhibits pH-dependent longitudinal relaxivity, and the high relaxivity both at low and high pH (r1p=28.13 mM-1 s-1 at pH 5.6 and 16.52 mM-1 s-1 at pH 9.5) indicates that it could be used as a pH-responsive MRI contrast agent. The transverse relaxivity of the tetramer is 129.97 mM-1 s-1 (24 MHz, 35+/-0.1 degrees C, pH 5.6), and the r2p/r1p ratio of 4.6 shows that it could be used as a T2-weighted contrast agent.  相似文献   

14.
The design of effective pH responsive MRI contrast agents is a key goal in the development of new diagnostic methods for conditions such as kidney disease and cancer. A key factor determining the effectiveness of an agent is the difference between the relaxivity of the "on" state compared to that of the "off" state. In this paper, we demonstrate that it is possible to improve the pH-responsive action of a low molecular weight agent by conjugating it to a macromolecular construct. The synthesis of a bifunctional pH responsive agent is reported. As part of that synthetic pathway we examine the Ing-Manske reaction, identifying an undesirable by-product and establishing effective conditions for promoting a clean and effective reaction. Reaction of the bifunctional pH responsive agent with a G5-PAMAM dendrimer yielded a product with an average of 96 chelates per dendrimer. The relaxivity of the dendrimer conjugate rises from 10.8 mM(-1) s(-1) (pH 9) to 24.0 mM(-1) s(-1) (pH 6) per Gd(3+) ion. This more than doubles the relaxivity pH response, Deltar(1), of our agent from just 51 % for the original low molecular weight chelate to 122 % for the dendrimer.  相似文献   

15.
The results of a (1)H nuclear magnetic relaxation dispersion (NMRD) and EPR study on aqueous suspensions of Gd(3+)-loaded NaY nanozeolites and AlTUD-1 mesoporous material are described. Upon increase of the Si/Al ratio from 1.7 to 4.0 in the Gd(3+)-loaded zeolites, the relaxation rate per mM Gd(3+) (r1) at 40 MHz and 25 degrees C increases from 14 to 27 s(-)1 mM(-1). The NMRD and EPR data were fitted with a previously developed two-step model that considers the system as a concentrated aqueous solution of Gd(3+) in the interior of the zeolite that is in exchange with the bulk water outside the zeolite. The results show that the observed increase in relaxivity can mainly be attributed to the residence lifetime of the water protons in the interior of the material, which decreased from 0.3 to 0.2 micros, upon the increase of the Si/Al ratio. This can be explained by the decreased interaction of water with the zeolite walls as a result of the increased hydrophobicity. The importance of the exchange rate of water between the inside and the outside of the material was further demonstrated by the relatively high relaxivity (33 s(-1) mM(-1) at 40 MHz, 25 degrees C) observed for a suspension of the Gd(3+)-loaded mesoporous material AlTUD-1. Unfortunately, Gd(3+) leaches rather easily from that material, but not from the Gd(3+)-loaded NaY zeolites, which may have potential as contrast agents for magnetic resonance imaging.  相似文献   

16.
In this paper we report the preparation and characterization of [Gd(dtpa)](2-) intercalated layered double hydroxide (LDH) nanomaterials. [Gd(dtpa)](2-) (gadolinium(III) diethylene triamine pentaacetate) was transferred into LDH by anionic exchange. The intercalation of [Gd(dtpa)](2-) into LDH was confirmed by X-ray diffraction for the new phase with the interlayer spacing of 3.5-4.0 nm and by FTIR for the characteristic vibration peaks of [Gd(dtpa)](2-). The morphology of the nanoparticles was influenced by the extent of [Gd(dtpa)](2-) loading, in which the poly-dispersity quality decreased as the [Gd(dtpa)](2-) loading was increased. Compared with the morphology of the original Mg(2)Al-Cl-LDH nanoparticles (hexagonal plate-like sheets of 50-200 nm), the modified LDH-Gd(dtpa) nanoparticles are bar-like with a width of 30-60 nm and a length of 50-150 nm. LDH-Gd(dtpa) was expected to have an increased water proton magnetic resonance relaxivity due to the intercalation of [Gd(dtpa)](2-) into the LDH interlayer that led to slower molecular anisotropic tumbling compared with free [Gd(dtpa)](2-) in solution. Indeed, LDH-nanoparticle suspension containing approximately 1.6 mM [Gd(dtpa)](2-) exhibits a longitudinal proton relaxivity r(1) of approximately 16 mM(-1) s(-1) and a transverse proton relaxivity r(2) of approximately 50 mM(-1) s(-1) at room temperature and a magnetic field of 190 MHz, which represents an enhancement four times (r(1)) and 12 times (r(2)) that of free [Gd(dtpa)](2-) in solution under the same reaction conditions. We have thus tailored LDH-nanoparticles into a novel contrast agent with strong relaxivity, promising for great potential applications in magnetic resonance imaging.  相似文献   

17.
We have synthesized ditopic ligands L(1), L(2), and L(3) that contain two DO3A(3-) metal-chelating units with a xylene core as a noncoordinating linker (DO3A(3-) = 1,4,7,10-tetraazacyclododecane-1,4,7-triacetate; L(1) = 1,4-bis{[4,7,10-tris(carboxymethyl)-1,4,7,10-tetraazacyclododecane-1-yl]methyl}benzene; L(2) = 1,3-bis{[4,7,10-tris(carboxymethyl)-1,4,7,10-tetraazacyclododecane-1-yl]methyl}benzene; L(3) = 3,5-bis{[4,7,10-tris(carboxymethyl)-1,4,7,10-tetraazacyclododecane-1-yl]methyl}benzoic acid). Aqueous solutions of the dinuclear Gd(III) complexes formed with the three ligands have been investigated in a variable-temperature, multiple-field (17)O NMR and (1)H relaxivity study. The (17)O longitudinal relaxation rates measured for the [Gd(2)L(1-3)(H2O)(2)] complexes show strong field dependence (2.35-9.4 T), which unambiguously proves the presence of slowly tumbling entities in solution. The proton relaxivities of the complexes, which are unexpectedly high for their molecular weight, and in particular the relaxivity peaks observed at 40-50 MHz also constitute experimental evidences of slow rotational motion. This was explained in terms of self-aggregation related to hydrophobic interactions, pi stacking between the aromatic linkers, or possible hydrogen bonding between the chelates. The longitudinal (17)O relaxation rates of the [Gd(2)L(1-3)(H2O)(2)] complexes have been analysed with the Lipari-Szabo approach, leading to local rotational correlation times tau(1)(298) of 150-250 ps and global rotational correlation times tau(g)(298) of 1.6-3.4 ns (c(Gd): 20-50 mM), where tau(1)(298) is attributed to local motions of the Gd segments, while tau(g)(298) describes the overall motion of the aggregates. The aggregates can be partially disrupted by phosphate addition; however, at high concentrations phosphate interferes in the first coordination sphere by replacing the coordinated water. In contrast to the parent [Gd(DO3A)(H2O)(1.9)], which presents a hydration equilibrium between mono- and dihydrated species, a hydration number of q = 1 was established for the [Ln(2)L(1-3)(H2O)(2)] chelates by (17)O chemical shift measurements on Ln = Gd and UV/Vis spectrophotometry for Ln = Eu. The exchange rate of the coordinated water is higher for [Gd(2)L(1-3)(H2O)(2)] complexes k(ex)(298) = 7.5-12.0 x 10(6) s(-1)) than for [Gd(DOTA)(H2O)](-). The proton relaxivity of the [Gd(2)L(1-3)(H2O)(2)] complexes strongly decreases with increasing pH. This is related to the deprotonation of the inner-sphere water, which has also been characterized by pH potentiometry. The protonation constants determined for this process are logK(OH) = 9.50 and 10.37 for [Gd(2)L(1)(H2O)(2)] and [Gd(2)L(3)(H2O)(2)], respectively.  相似文献   

18.
Nanosized contrast agents have great potential in magnetic resonance molecular imaging applications for clinical diagnosis. This study proposes new nanoparticles spontaneously formed under mild conditions and composed of a noncovalent adduct between a gadolinium complex, a polymer of beta-cyclodextrin (pbetaCD: MW 1.5 x 10(6) g mol(-1)) and a dextran grafted with alkyl chains (MD). The formation of this supramolecular nanoassembly is based upon a "lock-and-key" recognition process in which the hydrophobic alkyl chains of MD and the adamantyl moieties of macrocyclic Gd(III) chelates are included in the cavities of pbetaCD. The large number of betaCDs contained in the pbetaCD resulted in the formation of 200 nm diameter nanoparticles, each entrapping 1.8 x 10(5) molecules of a low-molecular-weight Gd complex. This system, which exhibits a great relaxivity enhancement (48.4 mM(-1) s(-1), at 20 MHz and 37 degrees C) compared to the Gd(III) chelate itself (5.2 mM(-1) s(-1)), appears to be a promising strategy for the in vivo targeted delivery of Gd(III) complexes. The mechanisms of particle formation, conjugation strategies, and relaxometric characterizations in the field of contrast-enhanced magnetic resonance imaging are discussed.  相似文献   

19.
A ditopic DTPA monoamide derivative containing an 8-hydroxyquinoline moiety was synthesized and the corresponding gadolinium(iii) complex ([Gd(H5)(H(2)O)](-)) was prepared. After adding aluminum(iii), the 8-hydroxyquinoline part self-assembled into a heteropolymetallic triscomplex [(Gd5)(3)Al(H(2)O)(3)](3-). The magnetic and optical properties of this metallostar compound were investigated in order to classify it as a potential in vitro bimodal contrast agent. The proton nuclear magnetic relaxation dispersion measurements indicated that the relaxivity r(1) of [Gd(H5)(H(2)O)](-) and [(Gd5)(3)Al(H(2)O)(3)](3-) at 20 MHz and 310 K equaled 6.17 s(-1) mM(-1) and 10.9 s(-1) mM(-1) per Gd(iii) ion respectively. This corresponds to a relaxivity value of 32.7 s(-1) mM(-1) for the supramolecular complex containing three Gd(iii) ions. The high relaxivity value is prominently caused by an increase of the rotational tumbling time τ(R) by a factor of 2.7 and 5.5 respectively, in comparison with the commercially used MRI contrast agent Gd(iii)-DTPA (Magnevist?). Furthermore, upon UV irradiation, [(Gd5)(3)Al(H(2)O)(3)](3-) exposes green broad-band emission with a maximum at 543 nm. Regarding the high relaxivity and the photophysical properties of the [(Gd5)(3)Al(H(2)O)(3)](3-) metallostar compound, it can be considered as a lead compound for in vitro bimodal applications.  相似文献   

20.
The EPTPA5) chelate, which ensures fast water exchange in GdIII complexes, has been coupled to three different generations (5, 7, and 9) of polyamidoamine (PAMAM) dendrimers through benzylthiourea linkages (H5EPTPA = ethylenepropylenetriamine-N,N,N',N',N'-pentaacetic acid). The proton relaxivities measured at pH 7.4 for the dendrimer complexes G5-(GdEPTPA)111, G7-(GdEPTPA)253 and G9-(GdEPTPA)1157 decrease with increasing temperature, indicating that, for the first time for dendrimers, slow water exchange does not limit relaxivity. At a given field and temperature, the relaxivity increases from G5 to G7, and then slightly decreases for G9 (r1 = 20.5, 28.3 and 27.9 mM(-1) s(-1), respectively, at 37 degrees C, 30 MHz). The relaxivities show a strong and reversible pH dependency for all three dendrimer complexes. This originates from the pH-dependent rotational dynamics of the dendrimer skeleton, which was evidenced by a combined variable-temperature and multiple-field 17O NMR and 1H relaxivity study performed at pH 6.0 and 9.9 on G5-(GdEPTPA)111. The longitudinal 17O and 1H relaxation rates of the dendrimeric complex are strongly pH-dependent, whereas they are not for the [Gd(EPTPA)(H2O)]2- monomer chelate. The longitudinal 17O and 1H relaxation rates have been analysed by the Lipari-Szabo spectral density functions and correlation times have been calculated for the global motion of the entire macromolecule (tau(gO)) and the local motion of the GdIII chelates on the surface (tau(lO)), correlated by means of an order parameter S2. The dendrimer complex G5-(GdEPTPA)111 has a considerably higher tau(gO) under acidic than under basic conditions (tau(298)gO = 4040 ps and 2950 ps, respectively), while local motions are less influenced by pH (tau(298)lO = 150 and 125 ps). The order parameter, characterizing the rigidity of the macromolecule, is also higher at pH 6.0 than at pH 9.9 (S2 = 0.43 vs 0.36, respectively). The pH dependence of the global correlation time can be related to the protonation of the tertiary amine groups in the PAMAM skeleton, which leads to an expanded and more rigid dendrimeric structure at lower pH. The increase of tau(gO) with decreasing pH is responsible for the pH dependent proton relaxivities. The water exchange rate on G5-(GdEPTPA)111(k(298)ex = 150 x 10(6) s(-1)) shows no significant pH dependency and is similar to the one measured for the monomer [Gd(EPTPA)(H2O)]2-. The proton relaxivity of G5-(GdEPTPA)111 is mainly limited by the important flexibility of the dendrimer structure, and to a small extent, by a faster than optimal water exchange rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号