共查询到20条相似文献,搜索用时 46 毫秒
1.
利用脉冲热分析技术(PulseTA)实现对热分析-质谱(TA-MS)联用系统中逸出气体质谱信号的定量,考察了多种实验参数如不同载气流速、温度以及分析样品量等因素对热分析-质谱联用系统中逸出气体质谱信号定量校正的影响.实验结果表明,利用PulseTA对TA-MS联用系统中逸出气体CO2定量结果与理论计算值的相对误差约2.85%.同时利用TG-DTG-MS联用技术对氮化铟(InN)粉体的热分解行为进行研究,在氩气气氛下InN粉体的热分解过程一步完成,InN粉体在550~750℃得到相应的正离子质谱峰:N2+(m/z=28),所释放的N非常接近InN中N的理论含量.利用PulseTA技术检测到InN粉体受热分解放出氮气质量的实验测量值与理论计算值的相对误差约为1.36%. 相似文献
2.
锂离子电池正极材料LiFePO4电化学性能 总被引:1,自引:1,他引:0
分别采用蔗糖和乙炔黑作为碳添加剂,高温固相法合成LiFePO_4复合物,利用X射线衍射、扫描电子显微镜和充放电等测试技术对其晶体结构、表观形貌和电化学性能进行了研究。结果表明,合成的LiFePO_4均为单一的橄榄石型晶体结构。采用蔗糖包覆的LiFePO_4具有更好的电化学性能,以0.2 C充放电,首次放电比容量为148.6 mA·h/g,20次循环后放电容量仍为140.3 mA·h/g。 相似文献
3.
4.
5.
LiFePO4以其价格便宜,稳定性好,无毒等优点而倍受关注。但是非纳米LiFePO4的电子导电率低及扩散系数小限制了其在锂离子电池领域的大规模应用。而纳米电极材料以其特有的优点很好的解决了这些问题。本文主要综述了国内外合成纳米级LiFePO4 的不同方法及所得材料的对电化学性能和相关机理,以及纳米LiFePO4作为锂离子正极材料存在的问题。 相似文献
6.
7.
8.
本文由氧化石墨烯通过水热法制备直接获得石墨烯。采用热重-差热分析方法检测了石墨烯受热过程中的质量变化和氧化温度。利用热分析-质谱联用技术在400-650 ℃温度区间得到了水和二氧化碳正离子质谱峰,这说明石墨烯氧化过程中的质量损失是由羟基水和二氧化碳脱除造成的。同时,还采用非等温热分析动力学方法,利用5、10、15 ℃·min-1三种不同升温速率获得了石墨烯材料在空气气氛下的热分析动力学参数。通过Kissinger方法计算出石墨烯氧化过程中的活化能(Ea)和指前因子的对数(lg(A/s-1))分别为155.11 kJ·mol-1和6.90。利用Ozawa-Flynn-Wall (FWO)方法还建立了活化能和指前因子与反应转化率之间的关系。基于以上研究结果,本工作将对石墨烯在热界面、导热和先进复合材料等领域的应用提供参考价值。 相似文献
9.
纺锤体形LiFePO4锂离子电池正极材料的制备与性能 总被引:2,自引:0,他引:2
采用低温溶剂热法合成了LiFePO4, 并通过热处理方法制备出LiFePO4/C锂离子电池复合正极材料. 利用扫描电镜(SEM)、透射电镜(TEM)、X射线衍射(XRD)、傅里叶变换红外(FTIR)光谱以及恒电流充放电测试等方法对样品进行结构表征和充放电性能测试. 结果表明: 采用丙三醇(甘油)为溶剂, 低温条件下(120 °C)合成的LiFePO4具有橄榄石型晶体结构, 呈纺锤体形貌, 且具有粒径分布均匀的特点. 热处理后制备的LiFePO4/C复合正极材料仍呈纺锤体形貌, 且表现出了优良的充放电性能. 室温下以0.1C倍率恒流充放电, LiFePO4/C的首次放电比容量达到147.2 mAh·g-1, 50次循环后放电比容量仍然保持在136.3 mAh·g-1. 当倍率为0.2C、0.5C和1C时, 样品的平均放电比容量分别在130、120和108 mAh·g-1左右. 相似文献
10.
11.
锂离子电池作为便携式电子产品、新能源汽车、蓄电设备等产品电源备受关注。锂离子电池由正极、负极、隔膜和电解液四部分组成。隔膜虽然不直接参与锂离子电池中的电化学反应,但是隔膜作为锂离子电池的重要组成部分,其性质在很大程度上影响锂离子电池的性能。目前聚烯烃仍是使用最为广泛和商业化最为成功的锂离子电池隔膜材料,但因其不良的电解液浸润性和热稳定性,降低了锂离子电池的电性能和安全性,因此改性成为改善聚烯烃隔膜材料性能和推广应用的重要途径。本文从聚烯烃材料多层膜结构改性、表面涂覆改性和层层自组装改性三方面总结了近五年聚烯烃隔膜改性研究的最新进展。最后,提出增强聚烯烃隔膜的热稳定性和电化学性能仍是未来研究重点,并对新型隔膜材料进行展望。 相似文献
12.
LiFePO4/graphene (LiFePO4/G) cathode with exciting electrochemical performance was successfully synthesized by liquid phase method. LiFePO4 nanoparticles wrapped with multi-layered grapheme can be fabricated in a short time. This method did not need external heating source. Heat generated by chemical reaction conduct the process and removed the solvent simultaneously. The LiFePO4/G were analyzed by X-ray diffraction (XRD) analysis, scanning electron microscope (SEM), transmission electron microscopy (TEM), magnetic properties analysis and electrochemical performance tests. The LiFePO4/G delivered a capacity of 160 mAh g−1 at 0.1C and could tolerate various dis-charge currents with a capacity retention rate of 99.8%, 99.2%, 99.0%, 98.6%, 97.3% and 95.0% after stepwise under 5C, 10C, 15C, 20C, 25C and 30C, respectively. 相似文献
13.
14.
《印度化学会志》2021,98(10):100173
Electric vehicles are proven to be a potential alternative to traditional transport technologies and contribute largely to reducing fossil fuel consumption. In this review, various battery technologies used in electric vehicles are discussed in detail with their research advancements. In the market, various types of electric vehicles along with hybrid vehicles and plug-in hybrid vehicles demand batteries with high energy density, easy charging and discharging with good cycle life and low cost. Hence this article mainly focuses on the types of battery with these parameters in detail. Many battery technologies are currently employed in electric vehicles but the most frequently used batteries are Lithium-ion batteries. Thus, a greater focus is given to Li-ion batteries and their development by detailing the material-specific advancements in their electrode and electrolyte system. 相似文献
15.
Zhijia Zhang Yuxuan Hou Shaofei Zhang Guoliang Zhang Ming Li Huanming Lu Yong Li Xuerong Zheng Zhijun Qiao Zhenyang Yu Qin Huang Jianli Kang 《中国化学快报》2018,29(11):1656-1660
A novel Cu-SnO2 anode material derived from Cu6Sn5 alloy, retaining high conductivity of Cu and high theoretical capacity of SnO2 with a facile synthesizing process by oxidation and reduction method. The novel Cu structure penetrates in the composite particles inducing high conductivity and spaceconfined SnO2, which restrict the pulverization of SnO2 during lithiation/delithiation process. 相似文献
16.
Biomass-derived carbon materials have obtained great attention due to their sustainability,easy availability,low cost and environmentally benign.In this work,bamboo leaves derived nitrogen doped hierarchically porous carbon have been efficiently synthesized via an annealing approach,followed by an etching process in HF solution.Electrochemical measurements demonstrate that the unique porous structure,together with the inherent high nitrogen content,endow the as-derived carbon with excellent lithium/sodium storage performance.The porous carbon annealed at 700℃presents outstanding rate capability and remarkable long-term stability as anodes for both lithium-ion batteries and sodium-ion batteries.The optimized carbon delivers a high discharge capacity of 450 mAh/g after 500 cycles at the current density of 0.2 A/g for LIBs,and a discharge capacity of 180 mAh/g after 300 cycles at the current density of 0.1 A/g for SIBs. 相似文献
17.
《中国化学快报》2021,32(8):2459-2462
Bi draws increasing attention as anode materials for lithium-ion batteries and sodium-ion batteries due to its unique layered crystal structure,which is in favor of achieving fast ionic diffusion kinetics during cycling.However,the dramatic volume expansion upon lithiation/sodiation and an insufficient theoretical capacity of Bi greatly hinder its practical application.Herein,we report the Fe_2 O_3 nanoparticle-pinning Bi-encapsulated carbon fiber composites through the electrospinning technique.The introduction of Fe_2 O_3 nanoparticles can prevent the growth and aggregation of Bi nanoparticles during synthetic and cycling processes,re s pectively.Fe_2 O_3 with high specific capacity also contributes to the specific capacity of the composites.Consequently,the as-prepared Bi-Fe_2 O_3/carbon fiber composite exhibits outstanding long-term stability,which delivers reversible capacities 504 and 175 mAh/g after1000 cycles at 1 A/g for lithium-ion and sodium-ion batteries,respectively. 相似文献
18.
Transition metal oxides with high capacity are considered a promising electrode material for lithium-ion batteries (LIBs). Nevertheless, the huge volume expansion and poor conductivity severely hamper their practical application. In this work, a carbon riveting method is reported to address the above issues by designing multilayered N-doped carbon (N-carbon) enveloped Fe3O4/graphene nanosheets. When evaluated as a negative electrode, the N-carbon/Fe3O4/graphene nanocomposites demonstrate greatly enhanced electrochemical properties compared with Fe3O4/graphene. The N-carbon/Fe3O4/graphene presents a superior reversible capacity (807 mAh/g) over Fe3O4/graphene (540 mAh/g). Furthermore, it affords a considerable capacity of 550 mAh/g at 1 A/g over 700 cycles, indicating superb cycling stability. The structure-property correlation studies reveal that the carbon riveting layer is essential for enhancing the lithium diffusion kinetics. The good electrochemical properties and effective structure design make the carbon riveting strategy quite general and reliable to manipulate high performance electrodes for future LIBs. 相似文献
19.
Gian Tommaso Viola Michele Bortolotti Alessandro Zazzetta 《Journal of polymer science. Part A, Polymer chemistry》1996,34(1):13-24
UV absorption spectra of thermolyzed polybutadienyl- and polyisoprenyl-lithium reveal a chromophore group previously not recognized for such systems; its absorption band at 271 nm has been assigned to a structure with three conjugated double bonds. A two-step mechanism for the formation of this trienic structure is proposed: an intermolecular metallation of associated living ends is followed by lithium hydride (LiH) elimination. Along thermolysis the presence of a dienic structure was also recognized, the latter arising from intramolecular elimination of LiH. The trienyllithium structure is also considered to be an effective species for the observed molecular weight distribution (MWD) variations. The observed different extent of high molecular weight (HMW) for polyisoprenyl- and polybutadienyl-lithium is explained on the basis of a different stability of the intermediates present along the proposed reaction mechanism. The thermolytic behavior of polystyryllithium does not provide any significant change in MWD: the disappearance of the living chain ends, UV detected, is due to an intramolecular LiH elimination which obeys first-order kinetics. The influence of temperature and of the tetrahydrofuran (THF) level on kinetic rate constants was investigated. © 1996 John Wiley & Sons, Inc. 相似文献
20.
A facile and straightforward method was adopted to synthesize ZnCo2O4/graphene nanocomposite anode. In the first step, pure ZnCo2O4 nanoparticles were synthesized using urea-assisted auto-combustion synthesis followed by annealing at a low temperature of 400 °C. In the second step, in order to synthesize ZnCo2O4/graphene nanocomposite, the obtained pure ZnCo2O4 nanoparticles were milled with 10 wt% reduced graphene nanosheets using high energy spex mill for 30 s. The ZnCo2O4 nanoparticles, with particle sizes of 25–50 nm, were uniformly dispersed and anchored on the reduced graphene nanosheets. Compared with pure ZnCo2O4 nanoparticles anode, significant improvements in the electrochemical performance of the nanocomposite anode were obtained. The resulting nanocomposite delivered a reversible capacity of 1124.8 mAh g−1 at 0.1 C after 90 cycles with 98% Coulombic efficiency and high rate capability of 515.9 mAh g−1 at 4.5 C, thus exhibiting one of the best lithium storage properties among the reported ZnCo2O4 anodes. The significant enhancement of the electrochemical performance of the nanocomposite anode could be credited to the strong synergy between ZnCo2O4 and graphene nanosheets, which maintain excellent electronic contact and accommodate the large volume changes during the lithiation/delithiation process. 相似文献