首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
基于液体阵列味觉仿生传感器鉴别白酒香型的新方法   总被引:2,自引:0,他引:2  
通过模拟哺乳动物的味觉系统, 建立了交叉响应的液体阵列传感器, 为鉴别白酒香型提供了新方法. 选用7种染料和1种卟啉化合物作为传感单元, 构建液体阵列传感器, 集合8个传感单元的光谱响应信号构成分析物的指纹图谱, 达到识别的目的. 使用96孔板酶标仪采集响应数据, 结合主成分分析(PCA)、分层聚类分析(HCA)和判别分析(LDA)等模式识别方法进行数据处理, 对9种具有代表性的不同香型白酒样品进行了鉴别分析. PCA结果表明, 该方法对于白酒的检测主要基于酒体微量成分, 其中酸类物质对识别的贡献最大(贡献率达54.3%), 芳香类物质贡献率为18.6%; 同时, 仅用63.4%的数据信息量即可对白酒香型进行区分. HCA结果表明, 平行样均正确归类, 各白酒之间的相似程度在聚类图上得到体现. LDA结果表明, 该阵列对于9种白酒样品香型识别的准确率达到100%.  相似文献   

2.
以金属二聚体卟啉,席夫碱过渡金属配合物和特异性染料为敏感材料,结合溶胶凝胶技术构建了一种新型可视化传感器阵列系统,对9种不同产地不同等级的乌龙茶进行了检测。采用主成分分析,聚类分析技术和欧式距离对检测结果进行分析。该传感阵列系统可以对乌龙茶的产地和等级实现准确的可视化识别与分类,检测耗时为3 min。通过主成分分析获得的前2个主成分所代表的乌龙茶63.6%的信息量即可以实现不同等级茶叶区分。9种乌龙茶的平行实验数据均能100%准确区分,且等级相同产地相同的样本优先聚成一簇。研究结果表明所构建的可视化阵列传感器是一种能快速准确区分乌龙茶等级与产地的方法,在实时快速检测茶叶品质方面有潜在的应用价值。  相似文献   

3.
以筛选出的7种染料与合成的纳米金共同构建了液体传感器阵列,每个敏感点对不同农药样品产生不同的响应光谱,通过酶标仪采集光谱数据,结合主成分分析(PCA)、分层聚类分析(HCA)、判别分析(LDA)等模式识别方法建立了一种快速检测有机磷、氨基甲酸酯、有机氯、拟除虫菊酯类农药残留的新方法。PCA结果表明,前三个主成分反映了总信息量的92.69%,且能够对5种农药进行区分;HCA结果表明,对25个样品能够正确的归类;LDA结果表明,对5种农药识别的准确率达100%。表明这种可视化的液体阵列可为农药残留检测提供一个可靠平台,在农药残留检测中具有潜在的应用价值。  相似文献   

4.
陆跃翔 《化学进展》2014,26(6):931-938
阵列传感器采用人工模拟嗅觉系统的传感模式,实现多点信息的同时获取,极大地提高了分析效率,在公共安全、环境监测、医学检测等领域具有广阔的应用前景。其中,光化学阵列传感器因灵敏度高、输出信号丰富等优点而备受关注。近年来,为了进一步提高阵列传感器的识别能力和灵敏度,功能化纳米材料被广泛应用于光化学阵列传感器以增加传感材料的种类和发展新的传感方法。本文按照使用的光谱检测技术不同,详细介绍了功能化纳米材料在荧光、比色、催化发光和多通道阵列传感器等4类光化学阵列传感器中的应用。  相似文献   

5.
以卟啉及其衍生物和特异性染料为敏感化学元件, 基于交叉响应原理构建了识别蛋白质的可视6×6阵列. 该阵列以颜色差谱图显示其与蛋白质作用呈现的特异性光谱反应, 采用聚类分析、 主成分分析和欧氏距离对图谱进行了分析. 结果表明, 该阵列可以鉴别模式蛋白牛血清白蛋白(BSA)、 牛血红蛋白(BHb)和卵清白蛋白(Ova)及其混合物, 且有望实现定量分析. 此外, 阵列的高敏感性使其不仅能识别天然蛋白质和不同变性程度的蛋白质, 还能对其热变性过程进行可视化实时监控. 该阵列产生的特殊颜色变化与蛋白质的空间构型、 微环境pH值的差异及溶解度有关. 因此, 该方法不仅能实现对蛋白质的快速识别, 为蛋白质热变性机理的研究提供新途径, 而且在临床医学和食品安全等的实时快速检测方面有潜在的应用价值.  相似文献   

6.
以卟啉和其衍生物及指示剂为传感元件,构建了一种对氨基酸敏感的可视传感阵列.可视化学传感阵列以交互响应的敏感元件组成阵列,对不同物质产生特异的响应,并通过信号识别处理系统,将检测结果以图谱的方式显示,实现检测的可视化.研究中筛选了对氨基酸敏感的36种化学物质,构建了6×6的传感阵列,使用自主研发的阵列数据采集与处理系统,对10种具有代表性的常见氨基酸进行了检测,氨基酸溶液与阵列的反应时间为5 min.对实验检测结果数据采用主成分分析和判别分析进行了计算和分析.实验结果显示,通过阵列响应的可视差图可以将浓度为375 μmol/L的10种氨基酸明显区分.判别分析结果显示,本可视阵列对氨基酸识别的准确率达到97%.二维主成分散点图和判别分析散点图对10种氨基酸都有显著分辨效果.本可视传感阵列可用于氨基酸的快速识别.  相似文献   

7.
刘渊  丁立平  曹源  房喻 《化学进展》2012,(10):1915-1927
传感器阵列是基于对动物嗅觉系统的认识发展起来的一种有力的分子识别手段,其由一系列传感单元组成,通过各传感单元对样品响应后产生的特征图谱实现对特定物质的识别检测,尤其对混合样品的鉴定具有突出优势。其中,荧光传感器阵列由于具有灵敏度高、无需参照体系、输出信号丰富、能够成像等优点,已成为近年来传感器阵列发展的重点。本综述根据荧光传感单元形式的不同,分别介绍了溶液型、颗粒型、薄膜型荧光传感器阵列的发展情况,并重点阐述了荧光传感器阵列的设计方法、传感机理及其在对金属离子、有机化合物和生物分子识别中的应用。  相似文献   

8.
正生物传感器具有灵敏度高、检测速度快、操作简便、成本低、可进行连续动态监测等优点而成为蛋白质检测的一种重要方法。但是,目前研制的蛋白质生物传感器为了减小误差多为一次性使用。由于不同传感器的制作方式不同,不可避免会给蛋白质的检测带来差异性。而且,有些传感器的制作比较复杂,一次性使用成本较高。因此为了减小蛋白质检测的差异性并节约成本,急需发展一种可再生并能重复利用的蛋白质生物传感器。  相似文献   

9.
开发了一种鉴别β受体激动剂的新型阵列传感器。该传感器由8种传感物质构成,使用96孔板酶标仪采集响应数据,结合主成分分析(PCA)、分层聚类分析(HCA)、判别分析(LDA)等模式识别方法进行数据处理,对5类β受体激动剂及其混合物进行检测。PCA结果表明,该传感器主要是基于空间结构以及氢键作用实现对β受体激动剂的识别;HCA结果显示,93个分析样本归类正确;LDA结果显示,该传感器对于β受体激动剂识别的准确率达98.9%。本方法在β受体激动剂的检测中有潜在应用价值。  相似文献   

10.
张晗  丁家旺  秦伟 《化学进展》2021,33(10):1756-1765
多肽具有分子量小、易于合成、生物兼容性好、稳定性高及序列灵活多样等优点。因此,多肽作为新型生物识别元件,已被广泛应用于生物传感器的构建。电化学分析灵敏度高、准确度好、设备简单、检测范围广且易于操作。本文介绍了基于多肽识别的电化学生物传感器技术,包括多肽的修饰与固定化、多肽与待测物的识别及检测原理;综述了近五年多肽电化学生物传感器对重金属离子、小分子、蛋白质、细菌和病毒的检测;展望了肽基电化学生物传感器的发展趋势。  相似文献   

11.
Optical array‐based sensors are attractive candidates for the detection of various bio‐analytes due to their convenient fabrication and measurements. For array‐based sensors, multichannel arrays are more advantageous and used frequently in many electronic sensors. But most reported optically array based sensors are constructed on a single channel array. This difficulty is mainly instigated from the overlap in optical responses. In this report we have used nano‐graphene oxide (nGO) and suitable fluorophores as sensor elements to construct a multichannel sensor array for the detection of protein analytes. By using the optimized multichannel array we are able to detect different proteins and mixtures of proteins with 100 % classification accuracy at sub‐nanomolar concentration. This modified method expedites the sensing analysis as well as minimizes the use of both analyte and sensor elements in array‐based protein sensing. We have also used this system for the single channel array‐based sensing to compare the sensitivity and the efficacy of these two systems for other applications. This work demonstrated an intrinsic trade‐off associated with these two methods which may be necessary to balance for array‐based analyte detections.  相似文献   

12.
The precise discrimination of microbes based on family, class and drug resistivity is essential for the early diagnosis of infectious diseases. Information about the type and strength of drug resistivity can help the analyst to prescribe a suitable antibiotic at the proper dosage to completely eradicate microbes without giving them a chance to gain further resistance. Herein, we propose a sensor array based on the use of cationic two-dimensional MoS2 units and green fluorescence protein as building blocks. Cationic surfaces of receptors with various functionality were suitable for tunable interaction with anionic surfaces of microbes. The array successfully discriminates six different bacterial strains. The versatile ability of the receptors to bind with the wild-type as well as the corresponding ampicillin-resistant strain contributed significantly to rapid detection with high sensitivity. The optimized array was able to classify five different types and three different extents of drug-resistant variants of Escherichia coli by using bacteria cells and lysates. Finally, we have introduced the cross identification method using both bacteria cells and lysates and we found a great enhancement of detection in sensitivity and accuracy. This is the first report of this approach, which can be extended to many other methods for better accuracy in array-based detection.  相似文献   

13.
Functionalised gold nanoparticle (Au(NP)) chemiresistors are investigated for direct sensing of small organic molecules in biological fluids. The principle reason that Au(NP) chemiresistors, and many other sensing devices, have limited operation in biological fluids is due to protein and lipid fouling deactivating the sensing mechanism. In order to extend the capability of such chemiresistor sensors to operate directly in biofluids, it is essential to minimise undesirable matrix effects due to protein and lipidic components. Ultrafiltration membranes were investigated as semi-permeable size-selective barriers to prevent large biomolecule interactions with Au(NP) chemiresistors operating in protein-loaded biofluids. All of the ultrafiltration membranes protected the Au(NP) chemiresistors from fouling by the globular biomolecules, with the 10 kDa molecular weight cut-off size being optimum for operation in biofluids. Titrations of toluene in different protein-loaded fluids indicated that small molecule detection was possible. A sensor array consisting of six different thiolate-functionalised Au(NP) chemiresistors protected with a size-selective ultrafiltration membrane successfully identified, and discriminated the spoilage of pasteurised bovine milk. This proof-of-principle study demonstrates the on-chip protein separation and small metabolite detection capability, illustrating the potential for this technology in the field of microbial metabolomics. Overall, these results demonstrate that a sensor array can be protected from protein fouling with the use of a membrane, significantly increasing the possible application areas of Au(NP) chemiresistors ranging from the food industry to health services.  相似文献   

14.
The simultaneous identification of multiple metal ions in water has attracted enormous research interest in the past few decades. We herein describe a novel method for multiple metal ion detection using a carbon quantum dots (CQDs)-based chemosensor array and the CQDs are functionalized with different amino acids (glutamine, histidine, arginine, lysine and proline), which act as sensing elements in the sensor array. Eleven metal ions are successfully identified by the designed chemosensor array, with 100% classification accuracy. Importantly, the proposed method allowed the quantitative prediction of the concentration of individual metal ions in the mixture with the aid of a support vector machine (SVM). The sensor array also enables the qualitative detection of unknown metal ions under the interference of tap water and local river water. Thus, the strategy provides a novel high-throughput approach for the identification of various analytes in complex systems.  相似文献   

15.
This paper reports the fabrication of solid-state nanofiber sensor arrays and their use for detection of multiple proteins using principal component analysis (PCA). Four cationic and anionic fluorescently embedded nanofibers are generated by an electrospinning method, yielding unique patterns of fluorescence change upon interaction with protein samples. Five metal and nonmetal containing proteins, i.e., hemoglobin, myoglobin, cytochrome c, BSA, and avidin, have been investigated; and the results show that distinct fluorescent patterns can be formed upon the addition of protein samples to the array of solid nanofiber substrates, allowing their unambiguous identification. The nanofiber films are highly repeatable with a batch-to-batch variation of approximately 5% and demonstrated outstanding reusability with less than a 15% loss of fluorescence intensity signal after 5 regenerations of test cycles. For a more practical visualization, a cluster map was generated using PCA of the change-in-fluorescence (ΔI) composite patterns, demonstrating the potential of the method for diagnostic applications.  相似文献   

16.
The simultaneous detection of multiple analytes is an important consideration for the advancement of biosensor technology. Currently, few sensor systems possess the capability to accurately and precisely detect multiple antigens. This work presents a simple approach for the functionalization of sensor surfaces suitable for multichannel detection. This approach utilizes self-assembled monolayer (SAM) chemistry to create a nonfouling, functional sensor platform based on biotinylated single-stranded DNA immobilized via a streptavidin bridge to a mixed SAM of biotinylated alkanethiol and oligo(ethylene glycol). Nonspecific binding is minimized with the nonfouling background of the sensor surface. A usable protein chip is generated by applying protein-DNA conjugates which are directed to specific sites on the sensor chip surface by utilizing the specificity of DNA hybridization. The described platform is demonstrated in a custom-built surface plasmon resonance biosensor. The detection capabilities of a sensor using this protein array have been characterized using human chorionic gonadotropin (hCG). The platform shows a higher sensitivity in detection of hCG than that observed using biotinylated antibodies. Results also show excellent specificity in protein immobilization to the proper locations in the array. The vast number of possible DNA sequences combine with the selectivity of base-pairing makes this platform an excellent candidate for a sensor capable of multichannel protein detection.  相似文献   

17.
In recent years, the sensor array has attracted much attention in the field of complex system analysis on the basis of its good selectivity and easy operation. Many optical colorimetric sensor arrays are designed to analyze multi-target analytes due to the good sensitivity of optical signal. In this review, we introduce the targeting analytes, sensing mechanisms and data processing methods of the optical colorimetric sensor array based on optical probes (including organic molecular probes, polymer materials and nanomaterials). The research progress in the detection of metal ions, anions, toxic gases, organic compounds, biomolecules and living organisms (such as DNA, amino acids, proteins, microbes and cells) and actual sample mixtures are summarized here. The review illustrates the types, application advantages and development prospects of the optical colorimetric sensor array to help broad readers to understand the research progress in the application of chemical sensor array.  相似文献   

18.
Adsorption dynamics and their influence on signal transduction for carbon nanotube-based chemical sensors are explored using continuum site balance equations and a mass action model. These sensors are shown to possess both reversible and irreversible binding sites that can be modeled independently. For the case of irreversible adsorption, it is shown that the characteristic response time scales inversely with analyte concentration. It is inappropriate to report a detection limit for this type of sensor since any nonzero analyte concentration can be detected in theory but at a cost of increasing transduction time with decreasing concentration. The response curve should examine the initial rate of signal change as a function of analyte concentration. Conversely, a reversible sensor has a predefined detection limit, independent of the detector geometry with a characteristic time scaling that becomes constant in the zero analyte concentration limit. A simple analytical test is presented to distinguish between these two mechanisms from the transient response of a nanotube sensor array. Two systems appearing in the literature are shown to have an irreversible component, and regressed surface rate constants for this component are similar across different sensor geometries and analytes.  相似文献   

19.
《中国化学快报》2021,32(10):3043-3047
Discrimination of glycoproteins and cell types is a significant but difficult issue. Herein, we presented a novel fluorescence sensor array for the detection and identification of glycoproteins and cancer cells based on the specific affinity between boronic acid-containing carbon dots (BA-CDs) and cis-diol residues of polysaccharides. The differential binding affinity of three BA-CDs to various glycoproteins resulted in a different fluorescence turn-on signal pattern caused by aggregation-enhanced emission (AEE), along with negligible response from other proteins. Therefore, BA-CDs encompassing sensing elements and signal indicator into one can enable a fast and accurate discrimination of glycoproteins with simple and easy operation. Seven glycoproteins could be well discriminated at a very low concentration of 10 nmol/L. The discriminating capability of glycoproteins is not sacrificed in both human urine and serum. Notably, different glycoprotein compositions of cancer cells provide more recognizable features for identification of cancer cells, comparing to the total protein. Five cell types could be identified in 15 min at a low concentration of 1000 cells/mL. This method is fast, accurate, and easy operation, and has a potential application in cancer diagnosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号