首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
综述金属原子与非金属原子和分子在石墨烯、BC3平面等二维硼碳基纳米结构上的吸附所表现出的各种物理性质及可能的应用.纯净的石墨烯为零带隙的半金属、无磁且自旋轨道耦合效应非常弱,BC3平面为间接带隙半导体,但金属原子与非金属原子和分子的吸附可能使石墨烯体系在Dirac点处打开带隙、具有强自旋轨道耦合效应,可能使石墨烯体系与二维BC3体系具有磁有序、超导电性及应用在氢存储上.另外石墨烯表现出非常好的分子探测性能.  相似文献   

2.
TiO2表面氧空位对NO分子吸附的作用   总被引:3,自引:0,他引:3       下载免费PDF全文
汪洋  孟亮 《物理学报》2005,54(5):2207-2211
采用程序升温热脱附(TPD)实验方法测定了NO在TiO2表面吸附后的脱附谱,利用分子轨道理论研究了TiO2吸附NO的原子簇模型及吸附前后的原子簇能级变化.结果表明,NO在TiO2表面吸附后可在两个峰值温度450和980K脱附出N2.TiO2表面经预覆氧处理后,N2的脱附量降低.吸附时NO中的O能够占据TiO2表面氧空位并与N脱离,而N原子则相互结合成为N2脱附.分子轨道理论计算证明在TiO2(110)表面能够存在氧空位并具备吸附NO的结构条件.  相似文献   

3.
Density Functional Theory is used to investigate the effect of altering the B/N ratio and carbon doping on the electronic and magnetic structure of zigzag, (7, 0) and armchair (5, 5) boron nitride nanotubes. The calculations indicate that increasing the boron content relative to the nitrogen content significantly reduces the band gap to a value typical of a semiconductor. Calculations of carbon doped semiconducting BN tubes, which have more boron atoms than nitrogen atoms have a net spin and a difference in the density of states at the valence band between the spin up and spin down state.  相似文献   

4.
We investigated the interactions between two different geometrical configurations of single-walled carbon nanotubes and boron atoms using first-principle calculations within the framework of the density functional theory. With the aid of ab initio calculations, we introduced a new type of toxic gas sensor that can detect the presence of CO, NO and H2 molecules. We proved that the dopant concentration on the surface of the nanotube plays a crucial role in the sensitivity of this device. Furthermore, we showed that small concentrations of dopants can modify the transport and electronic properties of the single-walled carbon nanotube and can lend metallic properties to the nanotube. Band-gap narrowing occurs when the nanotube is doped with boron atoms. The emerged new energy level near the Fermi level upon boron doping clearly indicates the coupling between the p orbital of the boron atom and the large p bond of the carbon nanotube. We also predicted a weak hybridization between the boron atoms and the nanotube for the valence-band edge states; this weak coupling leads to conducting states around the band gap.  相似文献   

5.
《Physics letters. A》2019,383(21):2472-2480
We studied the adsorption behavior of CO molecules over graphitic carbon nitride (gCN) and VIII transition metals (TM)-embedded gCN systems (TM=Ni, Pd, and Pt atoms) using density functional theory. The results indicated that the Pt-embedded gCN is excellent candidate for adsorption of CO molecules with adsorption energy of −2.77 eV, which is much better than those of the other adsorbents. Furthermore, it was observed that the band gap energies of TM-embedded systems were less than that of pristine gCN and decoration of transition metal atoms leads to the formation of mid gap impurity states, resulting in increase of electrical conductivity. Additionally, the Lowdin charges displayed that upon adsorption of CO molecules, this molecule acts as an electron acceptor and gCN systems behave as an electron donor with electron transfer from d-orbitals of transition metal atoms to the states of CO molecule. The results of spin polarized band structure indicated that the pristine gCN, Ni and Pd-embedded systems are non-magnetic, whereas Pt-embedded gCN induces non-zero magnetic moment equal to 1.35 μB. Therefore, our results revealed that among the TM-embedded systems, Pt-embedded gCN is more effective than those of the other adsorbents in sensing and removing of this gas from the atmosphere.  相似文献   

6.
In this work, we have theoretically studied the changes in electrical properties of three different geometrical structures of carbon nanotubes upon co-doping them with boron and nitrogen atoms. We applied different doping mechanisms to study band structure variations in the doped structures. Doping carbon nanotubes with different atoms will create new band levels in the band structure and as a consequence, a shift in the Fermi level occurs. Whereas, filling up the lowest conduction/ upper valence bands created an up/ downshift in the Fermi level. Moreover, dopants concentration and dopants position play a critical rule in defining the number of new band levels. These new band levels in the band gap region represented as new peaks appeared in the density of states. These new bands are solely attributed to co-doping carbon nanotubes with boron and nitrogen atoms.  相似文献   

7.
Analytical expressions describing dependences of the surface density of adsorbed oxygen ions and energy band bending in the subsurface region of a metal oxide semiconductor on the oxygen concentration that consider not only the process of neutral gas particle adsorption, but also their charge transfer at the expense of electron capture from the conduction band are presented. It is demonstrated that the heat of oxygen ion absorption is equal to the sum of the heat of neutral particle adsorption and the energy gap between the Fermi level and the level of the oxygen ion on the semiconductor surface. When the adsorption equilibrium is established, an analytical expression describing the time dependence of the energy band bending can be obtained only for small change of the oxygen concentration in the gas mixture.  相似文献   

8.
基于密度泛函理论体系下的广义梯度近似(GGA),采用第一性原理方法探讨了沿[112]晶向的硅锗异质结纳米线作为气体传感器检测CO,CO2和Cl2的能力,着重计算了其吸附气体分子前后的吸附能、能带结构与光学性质.几何结构优化计算表明:不同硅锗组分的[112]晶向的硅锗纳米线对CO,CO2和Cl2分子的吸附能的绝对值在0.001 eV至1.36 eV之间,其中Si24Ge36H32对CO2气体的吸附能最大,气敏性能最好.能带结构计算表明:吸附CO和CO2分子的[112]晶向硅锗纳米线能带的简并度明显减小,带隙变化较小;而吸附Cl2分子后的价带顶与导带底之间产生了杂质能级使其带隙减小.光学性质计算表明:Si24Ge36H32纳米线吸附CO, CO2和Cl2分子后的光学...  相似文献   

9.
The conditions of formation of local states in the energy spectra of semi-infinite carbon nanotubes with regularly arranged atoms adsorbed on the outer surface are studied in the π-electron approximation. The influence of the adsorption type (physical and chemical), the donor-acceptor properties of adsorbed atoms, their concentration on the graphene surface, and the nanotube diameter on the characteristics of the local states that arise is considered. It is shown that both physical and chemical adsorptions cause a decrease in the band gap separating the upper filled energy band and the lower vacant band. This effect can significantly change the electrical and optical properties of the nanotubes under consideration in comparison with the initial “pure” tubulene.  相似文献   

10.
采用基于密度泛函理论的第一性原理计算方法, 研究了氮化硼纳米管六元环中心吸附5d过渡金属原子后体系的几何结构, 电子结构和磁性性质. 研究发现, 吸附原子向一个氮原子或硼原子偏移; 吸附体系在费米能级附近出现明显的杂质能级; 各个体系的总磁矩随原子序数出现规律性变化, 局域磁矩主要分布在吸附原子上.  相似文献   

11.
Exposing the (111) surface of the topological insulator Bi(2)Se(3) to carbon monoxide results in strong shifts of the features observed in angle-resolved photoemission. The behavior is very similar to an often reported "aging" effect of the surface, and it is concluded that this aging is most likely due to the adsorption of rest gas molecules. The spectral changes are also similar to those recently reported in connection with the adsorption of the magnetic adatom Fe. All spectral changes can be explained by a simultaneous confinement of the conduction band and valence band states. This is possible only because of the unusual bulk electronic structure of Bi(2)Se(3). The valence band quantization leads to spectral features which resemble those of a band gap opening at the Dirac point.  相似文献   

12.
By using density functional theory calculations, we investigated the structural, electronic and magnetic properties of carbon monoxide (CO) adsorption on the pure, Ni, Pd and Pt doped atoms in zigzag single-walled (7, 0) boron nitride nanotubes (BNNTs). The results indicated that compared to the pure (7, 0) BNNTs, replacing B atom by Ni, Pd and Pt atoms can significantly increase the adsorption energy of CO gas on the BNNTs. The adsorption energies of CO gas on the pure (7, 0) Ni, Pd and Pt doped (7, 0) BNNTs are ?0.2013, ?1.746, ?1.593 and ?2.257 eV, respectively. Our results revealed that in comparison with the pure (7, 0) BNNTs, CO gas is chemisorbed on the transition metal doped (7, 0) BNNTs with the appreciable adsorption energy. In addition, it was found that by doping these atoms, band gap energy of the pure (7, 0) BNNTs is considerably decreased. These observations suggested that the Pt doped (7, 0) BNNTs can be introduced as a promising candidate in gas sensor devices for detecting CO gas.  相似文献   

13.
王昆鹏  师春生  赵乃勤  杜希文 《物理学报》2008,57(12):7833-7840
采用基于密度泛函理论的平面波赝势方法和广义梯度近似,对未掺杂、掺B、掺N的碳纳米管(CNT)不同位置上Al原子的吸附进行了几何优化,计算了吸附Al、掺杂前后CNT的能带结构、态密度、差分电荷密度、电荷布居数和吸附能.计算结果表明,掺B使CNT形成缺电子状态,利于具有自由电子的Al原子的吸附结合,可显著提高Al在金属性的(5,5)CNT和半导性的(8,0)CNT外壁的吸附能;掺杂N形成多电子状态,在费米能级附近半满的施主能级也利于填充Al的价电子,改善Al在(5,5)CNT和(8,0)CNT外壁的吸附结合性 关键词: 密度泛函理论 单壁碳纳米管 B(N)掺杂 Al原子吸附  相似文献   

14.
Shi  Yanan  Sun  Fengying  Wang  Dan  Zhang  Renyu  Dou  Changlin  Liu  Wanhui  Sun  Kaoxiang  Li  Youxin 《Journal of nanoparticle research》2013,15(10):1-10
The electron transport properties of CO adsorbed SiC nanotubes as a function of concentration density and structural deformation have been characterized for the single-walled (7,0) zigzag model using a combined formalism of density-functional theory and nonequilibrium Green’s function. It is found that CO adsorption can significantly suppress the transmission spectrum of SiC nanotube for a wide range of energies. As the concentration increases, a density-dependent superimposed transport gap exists and widens the initial electronic band gap of SiC nanotube. Under the same applied bias voltage, the current through SiC nanotube decreases with the increasing CO concentrations. The local torsional deformation has no effect on this essential motif. However, the current in the locally twisted system is larger than that of the undeformed one. The transmission suppression and the current differences can be attributed to the response of the localized impurity state induced by CO adsorption to density and deformation. Our results show that SiC nanotube can be a promising gas sensor for CO detection.  相似文献   

15.
范达志  刘贵立  卫琳 《物理学报》2017,66(24):246301-246301
基于密度泛函理论的第一性原理方法研究了扭转形变对石墨烯吸附O体系结构稳定性、电子结构和光学性质,包括吸附能、带隙、吸收系数及反射率的影响.研究发现,吸附O原子后,距O原子最近的C原子被拔起,导致石墨烯平面发生扭曲.吸附能计算表明,扭转形变使石墨烯吸附O原子体系结构稳定性下降,而扭转程度对结构稳定性影响微弱.能带结构分析发现,O原子的吸附使石墨烯由金属变成半导体,扭转形变发生时,可实现其从半导体到金属、再到半导体特性的转变.扭转角为12°的吸附O原子体系为间接带隙,而其他出现带隙的体系均为直接带隙.与本征石墨烯受扭体系相比,吸附O原子体系的电子结构对扭转形变的敏感度降低,其中扭转角在10°—16°范围内变化时,带隙始终稳定在0.11 eV附近,即在此扭转角范围内始终对应窄带隙半导体.在光学性能中,受扭转形变的吸附体系吸收系数和反射率峰值较未受扭转形变石墨烯吸附O原子体系均减弱,且随着扭转程度的加剧,均出现红移到蓝移的转变.  相似文献   

16.
The electronic band structures of boron nitride crystal modifications of the graphite (h-BN), wurtzite (w-BN), and sphalerite (c-BN) types are calculated using the local coherent potential method in the cluster muffin-tin approximation within the framework of the multiple scattering theory. The specific features of the electronic band structure of 2H, 4H, and 3C boron nitride polytypes are compared with those of experimental x-ray photoelectron, x-ray emission, and K x-ray absorption spectra of boron and nitrogen. The features of the experimental x-ray spectra of boron nitride in different crystal modifications are interpreted. It is demonstrated that the short-wavelength peak revealed in the total densities of states (TDOS) in the boron nitride polytypes under consideration can be assigned to the so-called outer collective band formed by 2p electrons of boron and nitrogen atoms. The inference is made that the decrease observed in the band gap when changing over from wurtzite and sphalerite to hexagonal boron nitride is associated with the change in the coordination number of the components, which, in turn, leads to a change in the energy location of the conduction band bottom in the crystal.  相似文献   

17.
还原氧化石墨烯是大规模生产石墨烯的前体;然而迄今为止,还原氧化石墨烯的电子结构还没有达成共识. 本文运用从头分子动力学方法研究羟基在石墨烯表面的吸附过程. 在吸附过程中,OH基团首先在位于两个碳原子桥位上方形成物理吸附络合物,然后翻越过渡态,最终被吸附在一个碳原子的顶位位点. 结果显示5×5石墨烯表面最多可以吸附6个羟基,表明石墨烯表面羟基的覆盖率约为12%. 计算结果还显示,负吸附能随着羟基吸附数目的增加而线性增加,带隙也随着羟基吸附数目的增加而线性增加.  相似文献   

18.
UV excimer lasers have been used to dope semiconductors by a one-step process in which the laser serves both to melt a controlled thickness of a sample placed in dopant ambient and to photodissociate the dopant molecules themselves. Here we report the boron doping of silicon by means of an ArF (193 nm) excimer laser. Dopant atoms are obtained by photolysis of BCl3 or pyrolysis of BF3 molecules. The doping is performed both in gas ambient and using only an adsorbed layer. We have investigated the dependence of doping parameters such as laser pulse repetition and gas pressure on the subsequent boron impurity profiles and the dopant incorporation rate. These results indicate that the laser doping process is dopant-flux limited for BF3 and externally rate limited for BCl3.  相似文献   

19.
A model of the multiple adsorption of atomic hydrogen on the surface of single-walled carbon nanotubes of the zigzag and arm-chair types was constructed. The adsorption model is based on the Anderson periodic model. An analytic equation for the band structure of carbon nanotubes with adsorbed hydrogen atoms was obtained, and the special features of this structure were studied. The dependence of the band structure of carbon nanotubes on the concentration of adsorbed hydrogen atoms was analyzed. The model constructed can be used to study adsorption of other univalent atoms on the surface of carbon particles.  相似文献   

20.
We studied affinity of pure and Ni, Pd and Pt-doped (7, 0) boron nitride nanotubes (BNNTs) to toxic HCN molecules using density functional theory calculations. The results indicated that the pure (7, 0) BNNTs can weakly adsorb HCN molecules with adsorption energy of ?0.2474 eV. Upon adsorption of HCN molecules on this nanotube, the band gap energy was decreased from 3.320 to 2.960 eV. The more negative adsorption energy between these transition metal-doped (7, 0) BNNTs and HCN molecules indicated that doping of (7, 0) BNNTs with Ni, Pd and Pt elements can significantly improve the affinity of BNNTs toward this gas. Additionally, it was found that the interaction energy between HCN molecules and Pt-doped BNNTs is more negative than those of the Ni and Pd-doped BNNTs. These observations suggested that the Pt-doped (7, 0) BNNTs are strongly sensitive to HCN molecules and therefore it may be used in gas sensor devices for detecting this toxic gas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号