首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we report an alternate technique for the deposition of nanostructured TiO2 thin films using the electrohydrodynamic atomization (EHDA) technique using polyvinylpyrrolidone (PVP) as a stabilizer. The required parameters for achieving uniform TiO2 films using EHDA are also discussed in detail. X-ray diffraction results confirm that the TiO2 films were oriented in the anatase phase. Scanning electron microscope studies revealed the uniform deposition of the TiO2. The purity of the films is characterized by using Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS), confirming the presence of Ti–O bonding in the films without any organic residue. The optical properties of the TiO2 films were measured by UV-visible spectroscopy, which shows that the transparency of the films is nearly 85% in the visible region. The current–voltage (IV) curve of the TiO2 thin films shows a nearly linear behavior with 45 mΩ?cm of electrical resistivity. These results suggest that TiO2 thin films deposited via the EHDA method possess promising applications in optoelectronic devices.  相似文献   

2.
We have investigated the deposition of 91% ZrO2 − 9% Y2O3 thin films by a variety of sputtering techniques for the application as electrolytes in thin film solid oxide fuel cells. The deposition by RF sputtering was accomplished by using an oxide target of the desired composition. The deposition rate in these initial tests was limited to 0.5 μm/hr and the morphology of the film was substantially modified by deposition rate and substrate temperature. Using DC magnetron sputtering we deposited metallic films from a metallic target with the desired chemical composition. We introduced oxygen into the sputtering chamber to reactively deposit the desired 91% ZrO2 − 9% Y2O3 thin films; however, we encountered problems with target oxidation and growth rate reproducibility. We subsequently demonstrated that controlled oxidation of the metallic films could result in adhering, non porous yttria stabilized zirconia films. Paper presented at the 3rd Euroconference on Solid State Ionics, Teulada, Sardinia, Italy, Sept. 15–22, 1996  相似文献   

3.
InN has attracted much attention due to its optical and electrical properties that make it suitable for the fabrication of infrared optical devices and high-speed electronic devices. In this work we report on the structural properties and morphology of InN thin films grown on different substrates by radiofrequency plasma beam assisted pulsed laser deposition. Sapphire and silicon substrates were considered for the growth of these films. The influence of substrate type and growth parameters on the morphology and structural properties of the resulting InN thin films is discussed. The structural analysis of the samples was performed by means of X-ray diffraction. The morphology of the thin films was investigated through atomic force microscopy. Although growth of InN from a metallic In target using nitrogen radiofrequency plasma assisted pulsed laser deposition was achieved for all the samples, growth conditions were found to play an important role on the crystal quality of the resulting thin films.  相似文献   

4.
We demonstrate combinatorial approach in investigation of organic thin film fabrication. “Combinatorial substrate screening”, which is the deposition onto several kinds of substrates simultaneously, is useful to choose suitable substrate for organic thin film growth. “Combinatorial thickness-gradient films” can be fabricated using a moving mask which travels from an edge to another edge of substrate continuously during the deposition. The combinatorial thickness-gradient film can be regarded as the library for time evolution of film growth during the deposition. This mapping can serve as a powerful method for the research of growth of thin film in an initial stage. Besides, combinatorial thickness-gradient film can be utilized for the examination of a buffer layer effect. These techniques enable us to quickly optimize for the fabrication of high-quality organic thin films.  相似文献   

5.
SnO2 thin film was grown on Si substrate using the low pressure chemical vapor deposition (LPCVD) method. The SnO2 thin film was grown in the direction of (110) as deposition time increased. The atomic ratio of O decreased by 62.4, 57.6, and 45.6%, and the thickness of the thin film increased to 0.2, 0.3, and 0.7 ? as the deposition time increased to 10, 20, and 30 min, respectively. The interface of the thin film was examined using high-resolution transmission electron microscope (HRTEM) and energy dispersive spectroscopy (EDS) analysis. The SiO2 layer was observed at between the SnO2 thin film and the Si substrate. This layer decreased in thickness as the deposition time increased, which indicates that the deposition time affected the interface of the thin film.  相似文献   

6.
The gadolinia-doped ceria (GDC) thin films were deposited by pulsed laser deposition. Samples with special geometry were prepared which allowed us to characterize GDC film in across-plane direction. The electrical properties of the films were investigated by means of impedance spectroscopy in the frequency range of 10 Hz to 10 GHz and 380–600 K temperature interval. The data analysis was performed by using appropriate equivalent circuit. The equivalent circuit modeled thin GDC film itself, platinum metal connections (traces) in the dielectric medium of sapphire substrate and interfaces between the film and platinum electrodes. Hence, several factors influenced the impedance spectra, namely the properties of substrate, the oxygen-ion transport in the film, ion blocking at the interface between the film and the electrode, and metal traces. The electrical properties of GDC thin films were compared with these of bulk ceramics and showed similar conductivity and dielectric permittivity values. The study also revealed that measurement data at electrical field frequencies of up to 10 GHz were particularly important to correctly estimate electrical properties of GDC thin films, because at high temperatures the electric response of GDC film shifts to high frequencies (higher than 1 MHz at 600 K). The thin film sample preparation for high frequency measurements and fitting of impedance data by using relatively simple equivalent circuit model is presented.  相似文献   

7.
Nano-structure thin film of tungsten nitride was deposited onto Si-substrate at room temperature using Mather-type plasma focus (3.3?kJ) machine. Substrate was exposed against 10, 20, 30, and 40 deposition shots and its corresponding effect on structure, morphology, conductivity and nano-hardness has been systematically studied. The X-ray diffractormeter spectra of the exposed samples show the presence of various phases of WN and WN2 that depends on number of deposition shots. Surface morphological study revealed the uniform distribution of nano-sized grains on deposited film surface. Hardness and conductivity of exposed substrate improved with higher deposition shots. X-ray photo-electron spectroscopy survey scan of 40 deposition shots confirmed the elemental presence of W and N on Si-substrate.  相似文献   

8.
Effects of deposition process parameters on the deposition rate and the electrical properties of In2O3–10 wt% ZnO (IZO) thin films were modeled and analyzed by using the error back-propagation neural networks (BPNN). Output models were represented by response surface plots and the fitness of models was estimated by calculating the root mean square error (RMSE). The deposition rate of IZO thin films is affected by the RF power and the substrate temperature. The electrical properties of the IZO thin films are mainly controlled by O2 ratio and the substrate temperature. The predicted output characteristics by BPNN can sufficiently explain the mechanism of IZO deposition process. Thus, neural network models can provide the reliable explanation of IZO film deposition.  相似文献   

9.
The techniques of formation of thin metallic coatings by deposition of silver nanoparticles (NPs) from solution onto the surface of glass and silicon substrates modified by polyelectrolytes were developed. The possibilities of the adsorption of individual silver particles, as well as creation of continuous films on their basis, were shown. The transmission, absorption and reflection spectra of obtained coatings were investigated. The most promising structure for metamaterials creation from the list of formed one was determined—solid thin film of Ag NPs on a glass substrate modified by polyethylenimine.  相似文献   

10.
Cu2S thin films deposited on glass substrate by chemical bath deposition were studied at different deposition temperatures and times. The results of X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive X-ray analysis (EDX), the Hall Effect measurement system and UV-Vis absorption spectroscopy indicate that both deposition temperature and time are important to obtain polycrystalline thin films. XRD showed that the polycrystalline Cu2S thin films have monoclinic structure. Meanwhile, the structural variations were analyzed using SEM. EDX analysis results of the thin film showed that the atomic ratio of Cu/S was close to 2:1. It was found from the Hall Effect measurement that the resistivity varied from 4.59?×?10?3 to 13.8?×?10?3 (Ω?cm). The mobility values of the Cu2S thin films having p-type conductivity varied from 15.16 to 134.6?cm2/V.s. The dark electrical resistivity measurements were studied at temperatures in the range 303–423?K. The electrical activation energies of Cu2S thin films were calculated by using Arrhenius plots, from which two different activation energy values are estimated for each thin film. Using UV-Vis absorption spectroscopy (Ultraviolet/visible), the direct and indirect allowed optical band gap values were determined to lie between 2.16 and 2.37?eV and 1.79 and 1.99?eV, respectively. In addition, the values of the refractive index (n) and the extinction coefficient (k) were determined.  相似文献   

11.
Electrical conductivity dependence of thin metallic films of Au and Pd over the different perovskites was investigated. It is found from electrical properties that crystallographic growth orientation of Au and Pd thin layers attained from X-ray diffraction results indicate the slop of current (I)-voltage (V) plots. Besides, surface morphology and topography was considered using Field Emission Scanning Electron Microscopy and Atomic Force Microscopy, respectively. Obtained results showed the Stranski-Krastanov growth of the Pd and Au. Indeed, diminishing of the root-mean-square roughness of Pd/BiMnO3/SrTiO3 following by Au deposition should be concerned due to growth of Au onto the crack-like parts of the substrate. These crack-like parts appeared due to parasitic phases of the Bi-Mn-O system mainly Mn3O4 (l 0 l) and Mn3O4 (0 0 4 l).The different response in the electrical properties of heterostructures suggests that electrical conductance of the Au and Pd thin metallic films have the crystallographic orientation dependence. Furthermore, polycrystallinity of the thin metallic films are desired in electrode applications due to increase the conductivity of the metallic layers.  相似文献   

12.
Metals and metal alloys are usually employed as interconnections to guide electrical signals between components into the very large scale integrated (VLSI) devices. These devices demand higher complexity, better performance and lower cost. Thin film is a common geometry for these metallic applications, requiring a substrate for rigidity. Accurate depth profile analysis of coatings is becoming increasingly important with expanding industrial use in technological fields. A number of articles devoted to LIBS applications for depth-resolved analysis have been published in recent years. In the present work, we are studying the ability of femtosecond LIBS to make depth profiling for a Ti thin film of thickness 213 nm deposited onto a silicon (100) substrate before and after thermal annealing. The measurements revealed that an average ablation rates of 15 nm per pulse have been achieved. The thin film was examined using X-Ray Diffraction (XRD) and Atomic Force Microscope (AFM), while the formation of the interface was examined using Rutherford Back Scattering (RBS) before and after annealing. To verify the depth profiling results, a theoretical simulation model is presented that gave a very good agreement with the experimental results.  相似文献   

13.
Experiments were conducted using pulse magnetron sputtering (PMS) to deposit transparent conducting indium tin oxide (ITO) thin film onto flexible polyethersulfone (PES) plastic substrates. The thin film microstructure, optoelectronic and residual stress were analyzed using the modulating PMS power, work pressure, pulse frequency, duty cycle and cycle time process parameters. The residual stress of the thin film was determined by scanning electron microscopy (SEM) combined with the Sony equation. The experimental results show that PMS has a lower process temperature, higher deposition rate and lower resistivity compared with the radio frequency process at the same output power. The duty cycle increase produces the optimum optoelectronic characteristics. When the pressure, power, duty cycle and sputter time are increased, the thin film stress will also increase, causing flexural distortion in the PES plastic substrate. When the deposition thickness reaches 1.5 μm, ITO thin film will appear with a distinct split. Under 5 mtorr work pressure, 60 W power, 33 μs duty time and 2 μs pulse reverse time at duty cycle 95%, thin film with an optimized electrical 3.0 × 10−4 Ω-cm, RMS surface roughness of 0.85 nm and visible region optical transmittance will be achieved with acquisition of over 85%.  相似文献   

14.
Aluminum-doped ZnO(AZO) thin films with thin film metallic glass of Zr(50)Cu(50) as buffer are prepared on glass substrates by the pulsed laser deposition. The influence of buffer thickness and substrate temperature on structural, optical, and electrical properties of AZO thin film are investigated. Increasing the thickness of buffer layer and substrate temperature can both promote the transformation of AZO from amorphous to crystalline structure, while they show(100)and(002) unique preferential orientations, respectively. After inserting Zr(50)Cu(50) layer between the glass substrate and AZO film, the sheet resistance and visible transmittance decrease, but the infrared transmittance increases. With substrate temperature increasing from 25℃ to 520℃, the sheet resistance of AZO(100 nm)/Zr(50)Cu(50)(4 nm) film first increases and then decreases, and the infrared transmittance is improved. The AZO(100 nm)/Zr(50)Cu(50)(4 nm) film deposited at a substrate temperature of 360℃ exhibits a low sheet resistance of 26.7 ?/, high transmittance of 82.1% in the visible light region, 81.6% in near-infrared region, and low surface roughness of 0.85 nm, which are useful properties for their potential applications in tandem solar cell and infrared technology.  相似文献   

15.
Electrostatic force microscopy has been shown to be a useful tool to determine the dielectric constant of insulating films of nanometer thicknesses that play a key role in many electrical, optical and biological phenomena. Previous approaches have made use of simple analytical formulas to analyze the experimental data for thin insulating films deposited directly on a metallic substrate. Here we show that the sensitivity of the EFM signal to changes in the dielectric constant of the thin film can be enhanced by using dielectric substrates with low dielectric constants. We present detailed numerical calculations of the tip-sample electrostatic interaction in the following setup: an insulating thin film, a dielectric substrate (or spacing layer) of known low dielectric constant and a metallic electrode. The EFM sensitivity to the dielectric constant increases with the thickness of the spacing layer and saturates for thicknesses above 100-300 nm, when it is close to that of an infinite medium.  相似文献   

16.
PbS nanocrystalline thin film was prepared by chemical bath deposition on Si(1?0?0) substrate at bath temperatures of 25, 45 and 65 °C. Triethanolamine was added to the aqueous solution, which decreased the grain size and increased the luminescence of the nanocrystalline PbS thin film. PbS nanocrystals were identified using XRD, TEM and AFM. The crystalline size of the PbS film deposited at different bath temperatures was estimated by XRD and TEM to be 7–12 nm. The growth mechanism of the PbS crystallites were described at different bath temperatures. The confinement was reflected in the absorption spectra, photoluminescence excitation and photoluminescence spectra. The luminescence of Si(1?0?0) substrate and PbS nanocrystalline film deposited on Si(1?0?0) were compared, and the results revealed that the PbS nanocrystals altered and notably enhanced the emission features of the Si(1?0?0) substrate. The shifting of the maximum photoluminescence emission wavelength of PbS nanocrystals with a change in bath temperature and the variation in photoluminescent intensity of PbS nanocrystals prepared at 25 °C versus deposition time were investigated. A single-peak fit of a Gaussian function was employed to discern the photoluminescence of PbS on Si(1?0?0) substrate.  相似文献   

17.
The influence of the substrate on the electrical conductance and on the structure of condensed metal films is investigated. Ag, Cu and Sn films are condensed at different temperatures onto two identical quartz plates. One of them was prenucleated at room temperature. At low condensation temperatures the influence of the metallic prenucleation on the structure of the film is very strong. Surprisingly we find the same influence if the prenucleation and the film are of the same metal. The influence of the nucleation on the electrical conductance of the film is not so strong. Gold films are condensed onto different dielectric substrates at room temperature. From measurements of the electrical conductivity we find that a fraction of the conduction electrons are specularly reflected at the boundaries of the film. This fraction depends on the substrate material and the annealing temperature of the film.  相似文献   

18.
Pulsed laser ablation is a very interesting method of depositing thin films of several materials and compounds, such as oxides, nitrides, insulators, semiconductors, and superconductors. Indium and tin oxide polycrystalline thin films have been grown on silicon (100) substrates by reactive PLD from two metallic targets of indium and tin by multilayered deposition, in the presence of oxygen, using a frequency-doubled Nd-YAG laser (5=532 nm). The films produced have been studied to evaluate their use as NO gas sensors, and the best performance has been found by varying some important parameters, such as the substrate temperature and the pressure of oxygen in the deposition chamber. X-ray diffraction analysis of the deposited films shows that they are polycrystalline with a preferential (400) orientation. Electrical resistivity measurements, performed by using a four-point probe technique, show a sharp increase in resistivity when the films are exposed to NO. The electrical responses of tin oxide-indium oxide multilayered thin films are reported.  相似文献   

19.
The ternary semiconductors compounds are found to be very useful in the fabrication of thin film devices. This paper reports the preparation of CdSexTe1?x films (1 ? x ? 0) in the thickness range 1000–3000 Å by vacuum evaporation technique onto glass and mica substrates held at temperatures, 303 to 623 K in a vacuum better than 5 × 10?6 torr. The films were characterised by determining their composition and structure. The structure of the films, examined using XRD and TEM techniques, was found to be cubic (zincblende) in the entire composition range. The electrical resistivity and Hall mobilities have been determined as a function of film composition and deposition temperature.  相似文献   

20.
Cu/ZnO/n+-Si structures were prepared by magnetron sputtering of a layer of ZnO thin film onto heavily doped silicon substrate, followed by thermal evaporation of a thin layer of metallic Cu. The resistive switching characteristics of Cu/ZnO/n+-Si structures were investigated as a function of oxygen partial pressure during ZnO deposition. Reproducible resistive switching characteristics were observed in ZnO thin films deposited at 20%, 33% and 50% oxygen partial pressure ratios while ZnO thin film deposited at 10% oxygen partial pressure ratio did not show resistive switching behavior. The conduction mechanisms in high and low resistance states are dominated by space-charge-limited conduction and ohmic behavior respectively, which suggests that resistive switching behaviors in such structures are related to filament formation and rupture. It is also found that the reset current decreases as oxygen partial pressure increases, due to the variation of oxygen vacancy concentration in the ZnO thin films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号