首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thermal conductivity of metallic zigzag carbon nanotube is investigated in the context of Holstein model. Green's function approach is implemented to calculate the electronic contribution of thermal conductivity as a function of radius of carbon nanotube, temperature and electron phonon coupling strength. Our results show that electronic thermal conductivity increases as a function of temperature at low temperature and gets a maximum value then decays at high temperature. Also the effect of radius of both metallic and semiconductor zigzag carbon nanotube on the thermal conductivity is studied. Our results show thermal conductivity increases when CNT diameter increases and decreases with electron phonon interaction strength.  相似文献   

2.
Hamze Mousavi 《Optics Communications》2012,285(13-14):3137-3139
The effect of electron–phonon interaction on the optical conductivity of semiconducting carbon nanotubes is studied. In this manner, the Kubo–Greenwood formula, Green's function technique and the Holstein Hamiltonian model are used. The optical conductivity of the system shows different behaviors between low and high frequency region. In the low frequency, the optical conductivity increases with electron–phonon coupling strength increasing while it has no noticeable change in the high frequency region. The results also show that the optical conductivity increases with increasing of nanotube's diameter.  相似文献   

3.
Electrical conductivity of graphene sheets is studied in the presence of coupling between lattice optical vibrations and electrons. Green's function approach is implemented to find the temperature behavior of electrical conductivity. Moreover, the effect of electronic doping on the electrical conductivity of graphene with electron–phonon interaction is investigated. Our results show that electrical conductivity increases as a function of temperature at low temperature and gets a maximum value and then decays at high temperature.  相似文献   

4.
Equilibrium molecular dynamics based Einstein relation with an appropriate definition for integrated heat current (i.e., with modified energy moment) are combined to quantify the thermal conductivity of individual single-walled carbon nanotubes, armchair, zigzag and chiral tubes. The thermal conductivity has been investigated as a function of three parameters, tube radius, length and chirality at and near room temperature with Brenner potential model. Thermal conductivity is found to have unusually high value and varies with radius, length and chirality of tubes. Also the thermal conductivity at temperature range from 50 to 100 K is found to have a maximum value. For 12.1 nm tube length, the thermal conductivity has converging trend which its value dependents on the tube radius and chirality. Tubes with large radius have lower values of thermal conductivity. Furthermore, the results show that armchair tubes have large values of the thermal conductivity comparing with zigzag and chiral tubes. It seems possible to uncover carbon nanotubes thermal properties based on measurements having heat dependence by adding another methods for calculations.  相似文献   

5.
The effect of atomic hydrogen adsorption on the conduction and diffusion properties of carbon nanotubes of zigzag type in an external electric field is considered. The model of adsorption of atomic hydrogen on the surface of single-walled carbon nanotubes of zigzag type is based on the single-impurity periodic Anderson model. The theoretical calculation of the diffusion coefficient and electrical conductivity of carbon nanotubes of zigzag type doped with hydrogen atoms is carried out in the relaxation time approximation. It has been revealed that the electrical conductivity and electron diffusion coefficient decrease with increasing concentration of adsorbed hydrogen atoms. It has been shown that the dependence of the electrical conductivity and the diffusion coefficient on the amplitude of the constant electric field at the constant concentration of hydrogen adatoms is nonlinear.  相似文献   

6.
7.
Using an expression of optical conductivity,based on the linear response theory,the Green's function technique and within the Holstein Hamiltonian model,the effect of electron-phonon interaction on the optical conductivity of graphene plane is studied.It is found that the electron-phonon coupling increases the optical conductivity of graphene sheet in the low frequency region due to decreasing quasiparticle weight of electron excitation while the optical conductivity reduces in the high frequency region.The latter is due to role of electrical field's frequency.  相似文献   

8.
The interplay of electron-electron interactions and spin-orbit coupling leads to a new contribution to the homogeneous optical conductivity of the electron liquid. The latter is known to be insensitive to many-body effects for a conventional electron system with parabolic dispersion. The parabolic spectrum has its origin in the Galilean invariance which is broken by spin-orbit coupling. This opens up a possibility for the optical conductivity to probe electron-electron interactions. We analyze the interplay of interactions and spin-orbit coupling and obtain optical conductivity beyond RPA.  相似文献   

9.
The possibility of forming solitons in zigzag carbon nanotubes is investigated using the coupled equations for the classical function of the electron distribution and the Maxwell equations for an electromagnetic field. It is demonstrated that the solitons are generated as a result of correlated changes in the classical distribution function and the electric field induced by nonequilibrium electrons of a carbon nanotube. The effective equation describing the dynamics of the electromagnetic field is derived. The existence of solitons is confirmed by the results of numerical calculations. The characteristics of solitons are investigated as a function of the diameter of zigzag carbon nanotubes.  相似文献   

10.
The optical absorption of the Fr?hlich polaron model is obtained by an approximation-free diagrammatic Monte Carlo method and compared with two new approximate approaches that treat lattice relaxation effects in different ways. We show that: (i) a strong coupling expansion, based on the Franck-Condon principle, well describes the optical conductivity for large coupling strengths (alpha > 10); (ii) a memory function formalism with phonon broadened levels reproduces the optical response for weak coupling strengths (alpha < 6) taking the dynamic lattice relaxation into account. In the coupling regime 6 < alpha < 10, the optical conductivity is a rapidly changing superposition of both Franck-Condon and dynamic contributions.  相似文献   

11.
刘红  印海建  夏树宁 《物理学报》2009,58(12):8489-8500
在紧束缚理论的基础上,推导出轴向拉伸和扭转形变时碳纳米管(CNT)的能带公式.结果显示拉伸和扭转形变都可以改变CNT的导电性质,在金属型和半导体型之间转变,特别是对于锯齿型CNT,根据n 与3的余数关系,在拉伸和扭转中分别显示出三种不同的变化规律.进一步应用场效应晶体管Natori理论模拟计算形变对CNT场效应晶体管的电流-电压特性的影响,锯齿型CNT根据n 与3的余数关系表现出不同的电流变化趋势,而对于扶手椅型CNT轴向拉伸不改变电流;在扭转形变时,CNT电流急剧升高,特别是扶手椅型CNT.锯齿型CNT和扶手椅型CNT的电流随扭转角度和外电压行为明显不同.在某些特定的扭转角度,电流随扭转角度变化非常显著,显示出锯齿型CNT和扶手椅型CNT发生半导体型与金属型之间的转变. 关键词: 碳纳米管 紧束缚理论 费米能级 能带结构  相似文献   

12.
We study the gas molecule adsorption effects on the electrical conductivity of both zigzag (9, 0) and armchair (5, 5) carbon nanotubes. Using the tight-binding model, Green’s function technique and coherent potential approximation, it is found that the adsorption of some gas molecules can cause a change in the electrical conductivity of metallic single-walled carbon nanotubes.  相似文献   

13.
We present accurate results for optical conductivity of the three dimensional Fr?hlich polaron in all coupling regimes. The systematic-error free diagrammatic quantum Monte Carlo method is employed where the Feynman graphs for the momentum-momentum correlation function in imaginary time are summed up. The real-frequency optical conductivity is obtained by the analytic continuation with stochastic optimization. We compare numerical data with available perturbative and nonperturbative approaches to the optical conductivity and show that the picture of sharp resonances due to relaxed excited states in the strong-coupling regime is "washed out" by large broadening of these states. As a result, the spectrum contains only a single-maximum broad peak with peculiar shape and a shoulder.  相似文献   

14.
Optical properties of an interacting large polaron gas   总被引:1,自引:0,他引:1  
The normal state conductivity, , of a system of interacting large polarons is calculated within the Random Phase approximation and some numerical results are presented. The behaviour of the optical absorption as a function of the charge carrier density and of the temperature is analyzed for different values of the electron-phonon coupling constant. It is shown that exhibits features similar to those observed in the infrared spectra of the cuprates. Received 27 January 1999  相似文献   

15.
冯黛丽  冯妍卉  陈阳  李威  张欣欣 《中国物理 B》2013,22(1):16501-016501
The thermal conductivity of carbon nanotubes with certain defects (doping, Stone-Wales, and vacancy) is investigated by using the non-equilibrium molecular dynamics method. The defective carbon nanotubes (CNTs) are compared with perfect tubes. The influences of type and concentration of the defect, length, diameter, and chirality of the tube, and the ambient temperature are taken into consideration. It is demonstrated that defects result in a dramatic reduction of thermal conductivity. Doping and Stone-Wales (SW) defects have greater effect on armchair tubes, while vacancy affects the zigzag ones more. Thermal conductivity of the nanotubes increases, reaches a peak, and then decreases with increasing temperature. The temperature at which the thermal conductivity peak occurs is dependent on the defect type. Different from SW or vacancy tubes, doped tubes are similar to the perfect ones with a sharp peak at the same temperature. Thermal conductivity goes up when the tube length grows or diameter declines. It seems that the length of thermal conductivity convergence for SW tubes is much shorter than perfect or vacancy ones. The SW or vacancy tubes are less sensitive to the diameter change, compared with perfect ones.  相似文献   

16.
In this study, the optical conductivity of substitutionary doped graphene is investigated in the presence of the Rashba spin orbit coupling (RSOC). Calculations have been performed within the coherent potential approximation (CPA) beyond the Dirac cone approximation. Results of the current study demonstrate that the optical conductivity is increased by increasing the RSOC strength. Meanwhile it was observed that the anisotropy of the band energy results in a considerable anisotropic optical conductivity (AOC) in monolayer graphene. The sign and magnitude of this anisotropic conductivity was shown to be controlled by the external field frequency. It was also shown that the Rashba interaction results in electron–hole asymmetry in monolayer graphene.  相似文献   

17.
In this article we study the role of Rashba spin–orbit coupling and electron–phonon interaction on the electronic structure of zigzag graphene nanoribbon with different width. The total Hamiltonian of nanoribbon is written in the tight binding form and the electron–electron interaction is modeled in the Hubbard term. We used a unitary transformation to reach an effective Hamiltonian for nano ribbon in the presence of electron–phonon interaction. Our results show that small Rashba spin orbit coupling annihilates the anti-ferromagnetic phase in the zigzag edges of ribbon and the electron–phonon interaction yields small polaron formation in graphene nano ribbon. Furthermore, Rashba type spin–orbit coupling increases (decreases) the polaron formation energy for up (down) spin state.  相似文献   

18.
It is shown that the single-particle self-energy of the one and two-dimensional simplified Hubbard model exhibits different behavior characterized by Fermi-liquid, non-Fermi-liquid quasiparticle, or non-quasiparticle excitations, as a function of the strength of the on-site Coulomb repulsionU, temperature, and electron filling. For half-filled lattices, results for the optical conductivity indicate that the d.c. conductivity is zero for all temperatures andU>0.  相似文献   

19.
Through the Green's function formalism and tight-binding Hamiltonian model calculations, the temperature dependent electronic thermal conductivity (TC) for different diameters of zigzag carbon nanotubes and their corresponding unzipped armchair graphene nanoribbons is calculated. All functional temperature dependencies bear crossovers, for which, at higher temperatures, nanotubes have a slightly higher TC than their derived nanoribbons, while below that crossover, both systems exhibit a significant coincidence over a moderate range of lower temperatures. Noticeably, TC decreases with increasing the width or diameter of the corresponding systems. Also, at low temperatures TC is proportional to the density of states around the Fermi level, and thus increasing for metal or semiconductors of narrower gap cases.  相似文献   

20.
对双温模型的重要热学参量电子热容、电子弛豫时间、电子热导率进行量子化处理,使双温模型能适用于自由电子温度比较高的情况.利用前向差分算法,数值求解了电子-晶格双温双曲两步热传导模型,所得的结果更接近实验值.经过分析得出: 1)薄膜前表面自由电子温度达到最大值的时间约为0.27 ps,得到的损伤阈值与实验值符合较好.2)电子热容对电子温升规律影响非常大.电子热导率对自由电子温升规律也有较大的影响.3)在趋肤层内自由电子温升非常快,不同厚度自由电子温度达到最大值所需的时间延迟不明显.趋肤层以下自由电子温度升高较慢,不同厚度自由电子达到最大值所需的时间延迟明显.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号