首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Citrate-based bioelastomers have great potentials in various biomedical fields. An appropriate selection of diol monomers could tune their properties to fulfill different application requirements. Herein, polycaprolacone diol (PCL-diol) was selected as the diol monomer to fabricate poly(caprolactone-diol citrate) (PCC) degradable bioelastomers by a one pot melt polycondensation coupled with subsequent thermosetting or post-polymerization. The catalyst-free polycondensation reaction was confirmed by Fourier transform infrared (FTIR) spectroscopy and 1H nuclear magnetic resonance (1HNMR) spectroscopy. The properties of the PCC elastomers were explored by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), uniaxial tension tests, dynamics mechanical analysis (DMA), water-contact angle and in-vitro degradation measurements. The results showed that the molar ratio of monomers and thermosetting conditions had significant effects on the ultimate properties of the PCC elastomer. By regulating monomer ratio and thermosetting temperature the crosslink density ranged from 32?±?6?mol/m3 to 292?±?18?mol/m3, the tensile strength ranged from 171?±?28?KPa to 977?±?112?KPa, Young’s modulus ranged from 252?±?36?KPa to 1737?±?212?KPa, ultimate elongation ranged from 70?±?9% to 260?±?32%, the static-water-contact-angle was in the range of 65.4?±?1.8?~?91.0?±?0.9° and the weight loss of the PCC elastomer in phosphate buffered saline (PBS) (pH =7.4) was in the range of 30?~?100?wt% after 8?weeks degradation. An elastic and compressible, porous scaffold was fabricated via a salt leaching method, which has potential use in soft tissue grafts.  相似文献   

2.
Polyvinylimidazole (PVIm)-grafted superparamagnetic iron oxide nanoparticles (SPION) (Si-PVIm-grafted Fe3O4 NPs) were prepared by grafting of telomere of PVIm on the SPION. The product identified as magnetite, which has an average crystallite size of 9?±?2?nm as estimated from X-ray line profile fitting. Particle size was estimated as 10.0?±?0.5?nm from TEM micrographs. Mean particle size is found as 8.4?±?1.0?nm which agrees well with the values calculated from XRD patterns (9?±?2?nm). Vibrating Sample Magnetometer (VSM) analysis explained the superparamagnetic nature of the nanocomposite. Thermogravimetric analysis showed that the Si-Imi is 25?% of the Si-PVIm-grafted SPION, which means an inorganic content is about 75?%. Detailed electrical and dielectric properties of the properties of the product are also presented. The conductivity of the sample increases significantly with temperature and has the value in the range of 1.14?×?10?7?C1.78?×?10?4?S?cm?1. Analysis of the real and imaginary parts of the permittivities indicated temperature and frequency dependency representing interfacial polarization and temperature-assisted reorganization effects.  相似文献   

3.
Dielectric elastomers (DE) are a new type of electro-active material, which is able to produce a large degree of deformation under electrical stimulation. The thermal, mechanical, and dielectric properties of the most widely used dielectric acrylic elastomer (VHB 4910), commercially available from the company 3M, were studied by differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), dynamic mechanical analysis (DMA), and broadband dielectric spectroscopy (BDS) analyzer, respectively. DSC experiments on the VHB 4910 showed a glass transition at about ?40°C. VHB 4910 started to lose weight at about 250°C from the TGA study. The results of DMA indicated the storage modulus of VHB 4910 increased with frequency and had a strong temperature dependence of elasticity. The dielectric constant of VHB 4910 increased as a function of temperature up to 0°C, followed by a drop till 100°C. The mechanical and electrical efficiency of dielectric elastomer actuators (DEA) of VHB 4910 were analyzed. It was demonstrated that the actuation performance is dominated by the mechanical properties of the elastomer and is less influenced by the frequency and the temperature dependence of the dielectric properties; this may be used to guide the design of actuator configurations, as well as the choice of actuator materials.  相似文献   

4.
Three particle effects on the electrical conductivity of hydrogen plasmas are investigated within the Green's function formalism. The transport collision frequency due to e? — H(1s)-scattering is found to cause a significant lowering of the conductivity isotherms for T ? 104 K. This behaviour is similar to that found for caesium plasmas.  相似文献   

5.
The influence of thermal treatment between 1273 and 1333?K in an oxygen atmosphere on the perovskite system RuSr2GdCu2O8 was studied by X-ray diffraction (XRD), scanning electron microscopy, electrical resistivity and Seebeck coefficient measurements. The XRD patterns revealed that the phase purity depends on the sintering process. The samples were found to exhibit very small crystallite sizes in the nanometer range. The electrical resistivity was found to be strongly correlated with the heat treatment. The temperature dependence of electrical resistivity for one sample revealed semiconducting behavior, whereas the others exhibit metallic behavior. All the investigated samples exhibit a positive thermoelectric power, indicating the predominance of positive charge carriers. It was found that the power factor reaches a maximum value of 0.4?×?10?4?W?m?1?K?2 at 300?K.  相似文献   

6.
When subjected to voltage,the dielectric elastomer membrane reduces its thickness and expands its area under the resulting compressive force.This characteristic enables the dielectric elastomer actuators of different structures to be designed and fabricated.By employing the thermodynamic theory and research method proposed by Suo et al.,an equilibrium equation of folded dielectric elastomer actuator with two generalized coordinates is established.The governing equations of failure models involving electromechanical instability,zero electric field,electrical breakdown,loss of tension,and rupture by stretch are also derived.The allowable areas of folded dielectric elastomer actuators are described.These results could provide a powerful guidance to the design and performance evaluation of the dielectric elastomer actuators.  相似文献   

7.
The pursuit for a high-performance thermoelectric n-type bismuth telluride-based material is significant because n-type materials are inferior to their corresponding p-type materials in highly efficient thermoelectric modules. Herein, to improve the thermoelectric performance of an n-type Bi2Te3, we prepared Bi2Te3 nano-plates with a homogeneous sub-micron size distribution and thickness range of about a few tens of nanometers. This was achieved using a typical nano-chemical synthetic method, and the prepared materials were then spark plasma sintered to fabricate n-type nano-bulk Bi2Te3 samples. We observed a significant enhancement of the anisotropic electrical transport properties for the nano-bulk sample with a higher power factor along the in-plane direction (24.3?μW?cm?1?K?2 at 300?K) than that along the out-of-plane direction (8.1?μW?cm?1?K?2 at 300?K). However, thermal transport properties were insensitive along the measured direction for the nano-bulk sample. We used a dimensionless figure of merit ZT to calculate the thermoelectric performance. The results showed that the maximum ZT value of 0.69 was achieved along the in-plane direction at 440?K for the nano-bulk n-type Bi2Te3 sample, which was however smaller than that of the previously reported n-type samples (ZT of 1.1). We believe that a further enhancement of the ZT value in the fabricated nano-bulk sample could be accomplished by effectively removing the surface organic ligand of the Bi2Te3 nano-plate particles and optimizing the spark plasma sintering conditions, maintaining the nano-plate morphology intact.  相似文献   

8.
The present work deals with the findings on the dielectric behaviour of cellulose acetate (CA) and its complexes consisting of ammonium tetrafluoroborate (NH4BF4) and polyethylene glycol with a molecular weight of 600?g/mol (PEG600) that were prepared using the solution casting method. The highest ?? obtained for CA-NH4BF4 film was 2.18?×?10?7 S cm?1 and enhanced to 1.41?×?10?5 S cm?1 with the addition of 30?wt.% PEG600. The dielectric behaviours of the selected samples were analyzed using complex impedance Z*, complex admittance A*, complex permittivity ?*, and complex electric modulus M*-based frequency and temperature dependence in the range of 10?Hz?C1?MHz and 303?C363?K, respectively. The variation in dielectric permittivity (?? r and ?? i) as a function of frequency at different temperatures exhibits a dispersive behaviour at low frequencies and decays at higher frequencies. The variation in dielectric permittivity as a function of temperature at different frequencies is typical of polar dielectrics in which the orientation of dipoles is facilitated with the rising temperature, and thereby the permittivity is increased. Modulus analysis was also performed to understand the mechanism of electrical transport process, whereas relaxation time was determined from the variation in loss tangent with temperature at different frequencies.  相似文献   

9.
Molybdenum-doped cadmium oxide films were prepared by a spray pyrolysis technique at a substrate temperature of 300?°C. The effect of doping on structural, electrical and optical properties were studied. X-ray analysis shows that the undoped CdO films are preferentially oriented along the (111) crystallographic direction. Molybdenum doping concentration increases the films?? packing density and reorients the crystallites along the (200) plane. A?minimum resistivity of 4.68×10?4????cm with a maximum mobility of 75?cm2?V?1?s?1 is achieved when the CdO film is doped with 0.5?wt.% Mo. The band-gap value is found to increase with doping and reaches a maximum of 2.56?eV for 0.75?wt.% as compared to undoped films of 2.2?eV.  相似文献   

10.
OL-1-type material (birnessite) is synthesized by an oxidoreduction process. Different physicochemical techniques were used to characterize the obtained material. AC impedance spectroscopy results show processes associated to the electrical conduction in bulk and grain boundary at high frequency, and an ionic conduction at low frequency. Here σ′(ω) shows a universal Jonscher’s law behavior associated to the electron hopping and charge polarization, and the value of 8.39?×?10?6 Ω?1?cm?1 found in the high frequency region at room temperature suggests its semiconductor nature. The combined results of AOS, TGA, and AA suggest the following chemical formula $ {\text{N}}{{\text{a}}^{ + }}_{{0.28}}\left( {{\text{M}}{{\text{g}}^{{2 + }}}_{{0.16}}{\text{M}}{{\text{n}}^{{4 + }}}_{{0.46}}{\text{M}}{{\text{n}}^{{3 + }}}_{{0.54}}} \right){{\text{O}}_{{2.03}}} \cdot 0.6{{\text{H}}_2}{\text{O}} $ . Finally, the XRD pattern is characteristic of OL-1-type materials, the BET area was 56,25 m2 g?1, and the behavior of N2 isotherms suggests the presence of microporous and mesoporous structures. With the purpose of obtaining a better understanding of the ionic conductivity in these types of materials, magnesium exchange material was prepared and electrical properties at room temperature were analyzed. These results indicate that there is interplay among the structural, morphological, and textural properties with the electrical performance of these materials.  相似文献   

11.
Fast ionic solid specimens of a new binary system namely (BiI3) x –(Ag2CrO4)100?x , where x?=?10, 20, 30, 40, 50, 60, 70, 80, and 90 mol%, were synthesized by melt quenching method. Detailed structural, thermal, and electrical transport properties evaluated by means of X-ray diffraction analysis, Fourier transform infrared spectroscopic investigations, and differential scanning calorimetry in conjunction with complex impedance analysis carried out over the frequency range 1 MHz–20 Hz and in the temperature region 298–430 K indicated the composite nature of such superionic solids consisting of glassy and crystalline phases and possessing electrical conductivities of the order 10?6–10?3 Scm?1 at 298 K. The best conducting composition of the present binary system has been identified as the specimen containing 30 mol% BiI3 and exhibiting a room-temperature electrical conductivity of 7.1?×?10?3 Scm?1 with an activation energy of 0.12 eV for silver ionic transport as confirmed by Wagner's polarization and E.M.F. techniques.  相似文献   

12.
A thin film of dilute Fe (0.008)-doped Sb0.95Se0.05 alloy was grown on silicon substrate using the thermal evaporation technique. This film was irradiated with swift heavy ions (SHIs) Ag+15 having 200?MeV energy at ion fluences of 1?×?1012 and 5?×?1012 ions per cm2, respectively. The thickness of the thin film was ~500?nm. We study the effect of irradiation on structural, electrical, surface morphology and magnetic properties of this film using grazing angle XRD (GAXRD), DC resistivity, atomic force microscopy (AFM) and magnetic force microscopy (MFM), respectively. GAXRD suggests that no significant change is observed in this system due to SHI irradiation. The average crystallite size increases with fluence, whereas the AFM image shows the rms roughness decreases due to irradiation with respect to the un-irradiated thin film. The MFM image shows that the magnetic interaction in irradiated film decreases due to the irradiation effect. Although the un-irradiated sample shows metal to semiconducting transition, but after irradiation with fluence of 5?×?1012 ions per cm2, the sharpness of the metal to semiconducting phase transition is observed to increase dramatically at ~300?K. This characteristic of the thin film makes it a promising candidate for an electrical switching device after irradiation.  相似文献   

13.
This study aimed at investigating the effect of adding copper (Cu) on some properties of the lead-free alloys which rapidly solidified from melt. X-ray analysis, hardness, elastic modulus, electrical conductivity and resistivity were studied. The results indicated that the alloy hardness and elastic modulus improved by increasing the copper (Cu) content and decreasing the zinc (Zn) content. The electrical conductivity ranged from 0.250 to 0.847?×?107 ohm?1 m?1 for the alloy under study. The electrical resistivity increases linearly with temperature until the melting point is reached. The residual resistivity results from disturbances in the lattice rather than caused by thermal vibration and the most drastic increases in the residual resistivity are caused by foreign atoms in solid solution with matrix metal. The electrical resistivity values ranged from 11.8 to 40?×?10?8 ohm m, when the copper content changed from 0.0 to 2.0 wt% and zinc changed from 8.0 to 10.0 wt%.  相似文献   

14.
This paper reports on the results of the investigation into the frequency dispersion of the capacitance and dielectric loss in capacitor structures based on red lead Pb3O4. It is established that, in the range of frequencies f = 1.50 × 10?3?0.25 Hz, the capacitance decreases and the dielectric loss tangent increases with increasing frequency. The frequency dependence of the electrical conductivity in an alternating-current electric field indicates the applicability of the hopping model of charge transfer under normal conditions. The role of a lone electron pair of Pb2+ cations in dielectric polarization is discussed.  相似文献   

15.
Halothane binding to hydrated dimyristoylphosphatidylcholine (DMPC) bilayer membranes has been examined over a wide range of pressures from 105 to 4?×?108?Pa. We show that the solvation of halothane by the membrane and bulk water are both pressure dependent, with an increased pressure driving halothane into the membrane. Analysis of these results shows that this pressure dependence is not the cause of pressure reversal, the process whereby general anaesthetics lose their efficacy at pressures of about 8?×?106 to about 2.5?×?107?Pa.  相似文献   

16.
Shock wave experiments were carried out to measure the electrical resistivity of fluid methane. The pressure range of 89–147?GPa and the temperature range from 1800 to 2600?K were achieved with a two-stage light-gas gun. We obtained a minimum electrical resistivity value of 4.5?×?10?2?Ω?cm at pressure and temperature of 147?GPa and 2600?K, which is two orders of magnitude higher than that of hydrogen under similar conditions. The data are interpreted in terms of a continuous transition from insulator to semiconductor state. One possibility reason is chemical decomposition of methane in the shock compression process. Along density and temperature increase with Hugoniot pressure, dissociation of fluid methane increases continuously to form a H2-rich fluid.  相似文献   

17.
This paper presents an experimental investigation on the strain rate sensitivity of Dual Phase steel 1200 (DP1200) and Dual Phase steel 1400 (DP1400) under uni-axial tensile loads in the strain rate range from 0.001?s?1 to 600?s?1. These materials are advanced high strength steels (AHSS) having high strength, high capacity to dissipate crash energy and high formability. Flat sheet specimens of the materials having gauge length 10?mm, width 4?mm and thickness 2?mm (DP1200) and 1.25?mm (DP1400), are tested at room temperature (20°C) on electromechanical universal testing machine to obtain their stress-strain relation under quasi-static condition (0.001?s?1), and on Hydro-Pneumatic machine and modified Hopkinson bar to study their mechanical behavior at medium (3?s?1, and 18?s?1) and high strain rates (200?s?1, 400?s?1, and 600?s?1) respectively. Tests under quasi-static condition are performed at high temperature (200°C) also, and found that tensile flow stress is a increasing function of temperature. The stress-strain data has been analysed to determine the material parameters of the Cowper-Symonds and the Johnson-Cook models. A simple modification of the Johnson-Cook model has been proposed in order to obtain a better fit of tests at high temperatures. Finally, the fractographs of the broken specimens are taken by scanning electron microscope (SEM) to understand the fracture mechanism of these advanced high strength steels at different strain rates.  相似文献   

18.
We present conductivity data for a newly synthesised metal–organic framework FeQ, Fe(C14H6O4).H2O demonstrating significant electronic transport. The electrical conductivity of the material is expected to be through the π–π interaction of the ligand-quinizarin and is measured to be 1.73?×?10?2?Scm?1. Its potential role as supercapacitor electrodes is discussed.  相似文献   

19.
《Composite Interfaces》2013,20(8):475-488
The polyaniline (PANI) is a widely studied conducting polymer due to its application in several devices such as biosensor, gas sensor etc. Known methods to produce PANI composites may be essentially reduced to two distinct groups: synthetic methods based on aniline polymerization in the presence of or inside a matrix polymer, and blending methods to mix a previously prepared PANI with a matrix polymer. Poly (aniline-co-butyl 3-aminobenzoate) (ANI-co-BAB) and poly (aniline-co-ethyl 3-aminobenzoate) (ANI-co-EAB) are prepared as conducting copolymers in nanoscale by chemical oxidation method under ultrasonic irradiation. The different molar ratio of aniline to butyl 3-aminobenzoate and ethyl 3-aminobenzoate are used in the preparation of copolymers. Conductive nanocomposites based on ANI-co-BAB or ANI-co-EAB with poly (styrene-alt-maleic acid) (PSMAC), and polystyrene are prepared by solution blending method. The obtained conductive composites formed films with good homogeneity and flexibility. The conductivity of the obtained nanocomposites is measured with a four-probe method. The electrical conductivity of the composites (ANI-co-EAB)/PSMAC/PS and (ANI-co-BAB)/PSMAC/PS are 24?×?10?5?S?cm?1 and 31?×?10?5?S?cm, respectively. Our results show that the (ANI-co-BAB)/PSMAC/PS composite has more conductivity than (ANI-co-EAB)/PSMAC/PS composite. The copolymers and composites in nanoscale are characterized by FT-IR and 1H NMR spectral data. The surface morphology was studied using SEM analysis. Also, their grain size is measured using XRD studies.  相似文献   

20.
Measurements of X-ray diffraction, electrical resistivity, and magnetization are reported across the Jahn–Teller phase transition in LaMnO3. Using a thermodynamic equation, we obtained the pressure derivative of the critical temperature (T JT ), dT JT /dP?=??28.3?K?GPa?1. This approach also reveals that 5.7(3)J?(mol?K)?1 comes from the volume change and 0.8(2)?J?(mol?K)?1 from the magnetic exchange interaction change across the phase transition. Around T JT , a robust increase in the electrical conductivity takes place and the electronic entropy change, which is assumed to be negligible for the majority of electronic systems, was found to be 1.8(3)?J?(mol?K)?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号