首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
超细Y_2O_3∶Eu荧光粉的阴极射线发光和光致发光   总被引:2,自引:1,他引:1       下载免费PDF全文
本文首次报道由尿素溶胶法制备的球形、超细(120~250nm)高效Y2O3∶Eu红色荧光粉的晶体结构及其阴极射线发光和光致发光性质.这种超细颗粒在254nm激发时的发光强度比商用的传统微米样品低.但在中等电压(≤10kV)的电子束激发下,其阴极射线发光强度超过商用微米样品.这种接近纳米的Y2O3∶Eu超细颗粒已表现出较强的表面效应.对实验结果进行了分析和讨论.  相似文献   

2.
用简单的微乳液-微波法合成大小和形貌可控的Y2O3:Eu3+纳米棒晶体.XRD结果表明,所制备样品为Y2O3:Eu3+纯相,属于体心立方晶系.TEM结果表明,随着水乳比ω0从5变化到35时,粒子发光粉的形状由纳米颗粒状变为纳米棒,纳米棒的直径约为30~50 nm,纳米棒长约为200~300 nm.激发光谱和发射光谱分析表明,最大的激发带是位于254 nm的Eu3+-O2-电荷迁移带.最大发射峰位于611 nm,属于Eu3+的特征发射.Y2O3:Eu3+纳米发光粉的发光强度随着ω0的增加而增强.发光寿命分析表明Y2O3:Eu3+纳米棒中Eu3+的发光寿命为2.03 ms.在阴极射线发光真空装置中测得的I-V曲线表明Y2O3:Eu3+纳米棒薄膜的启动电压仅1 300 V.同时,在2 000 V外加电压下可以清楚地观察到Y2O3:Eu3+纳米棒的阴极射线发光为Eu3+离子的特征红光.  相似文献   

3.
用简单的微乳液-微波法合成大小和形貌可控的Y2O3∶Eu3+纳米棒晶体。XRD结果表明,所制备样品为Y2O3∶Eu3+纯相,属于体心立方晶系。TEM结果表明,随着水乳比ω0从5变化到35时,粒子发光粉的形状由纳米颗粒状变为纳米棒,纳米棒的直径约为30~50 nm,纳米棒长约为200~300 nm。激发光谱和发射光谱分析表明,最大的激发带是位于254 nm的Eu3+-O2-电荷迁移带。最大发射峰位于611 nm,属于Eu3+的特征发射。Y2O3∶Eu3+纳米发光粉的发光强度随着ω0的增加而增强。发光寿命分析表明Y2O3∶Eu3+纳米棒中Eu3+的发光寿命为2.03 ms。在阴极射线发光真空装置中测得的I-V曲线表明Y2O3∶Eu3+纳米棒薄膜的启动电压仅1 300 V。同时,在2 000 V外加电压下可以清楚地观察到Y2O3∶Eu3+纳米棒的阴极射线发光为Eu3+离子的特征红光。  相似文献   

4.
采用高温固相法制备了LiGd1-xEux(MoO4)2钼酸盐红色发光粉,利用XRD和发光光谱技术对粉体进行了性能表征。结果表明:该系列发光粉均为四方晶系的白钨矿结构,能够被近紫外光(395nm)有效激发,产生Eu3+的5D0→7F2特征跃迁红光发射(616nm)。x=0.4时,即LiGd0.6Eu0.4(MoO4)2样品的发光强度超过商用红粉Y2O2S:Eu3+发光强度的5倍,虽然比未加入Gd样品LiEu(MoO4)2的发光强度略低,但LiGd0.6Eu0.4-(MoO4)2样品的组分中却减少了60%的Eu用量,明显降低了原料成本,更具实用价值,有希望成为白光发光二极管的红色发光材料。  相似文献   

5.
通过固相法合成LED用Zn-Mo1-ySiyO4:Eu3+x红色荧光粉(0.05≤x≤0.30,0≤y≤0.09),讨论了助熔剂、温度等合成条件对Zn1-xMo1-ySiyO4:Eux3+荧光粉发光性质的影响.当烧结温度为800℃时,可以生成ZnMoO4纯相目标产物.由于荧光粉的结晶度和粒径随烧结温度的升高而增大,所以随着烧结温度的升高,样品的发光强度有所提高;当助熔剂Na2CO3的用量约为4%时的样品发射光的强度比未使用助熔剂时明显增强,说明在此体系中,当Eu3+取代Zn2+时,Na2CO3充当助熔剂的同时,Na+起到了电荷补偿作用.荧光光谱实验显示Zn1-xMo1-ySOyO4:Eux3+能够被393和464 nm的紫外光激发,在616 nm处发出强烈的红色荧光.当Eu3+掺杂量约为20%mol时,Zn1-xMo0.97Si0.03O4:Eux3+荧光粉在616 nm处的发光强度达到最大.在引入Si4+离子后能显著增强Zn1-xMoO4:Eux3+的发光强度,组成为Zn0.80 Mo0.97Si0.03O4:Eu0.203+.样品(激发峰值为393 nm)的荧光强度要比Y2O2S:Eu0.053+荧光粉的发光强度强2倍.所以这种荧光物质能够更好地适用于白光LED.  相似文献   

6.
采用溶胶凝胶法制备不同配比的Y2O3∶Eu3+、Y2O3∶Tb3+和Y2O3∶Eu3+,Tb3+荧光粉.并通过XRD、SEM和激发、发射光谱对其结构和发光性能进行了研究,用能级图解释了激活剂之间的能量传递关系.结果表明,材料结晶良好,粒度分别为20、31nm和17nm左右,样品形貌类似片状结构.(Y110Eu)2kO3和(Y110Tb)2kO3配比时相对发光强度最高.而共掺杂时,存在着强烈的Eu3+向Tb3+的能量转移,导致红色发光强度的降低而敏化了绿光和蓝光的发射.分析可知,除了激活剂的含量对发光性能有强烈的影响之外,不同的激发波长对体系混合光的形成有很大的影响.当在305nm的激发波长下,可以得到红绿蓝混合光,实现了通过一种荧光粉的激发,发射出近白色的光.为改变灯用三基色荧光粉的组成并降低成本奠定了有利的实验基础.  相似文献   

7.
作者研究了在紫外(uv)和阴极射线(cr)激发下,共掺杂Pr~(3 )和/或Tb~(3 )的Y_2O_2S:Eu磷光体发光强度的提高。Pr~(3 )或Tb~(3 )的适当浓度为10~(-4)~10~(-3)原子%,在加速电压为10KV,电流密度为1μA/cm~2的激发条件下,亮度提高超过50%。在254nm光激发下仅提高10%。未掺杂Pr~(3 )或Tb~(3 )的Y_2O_2S:Eu~(3 )的阴极射线发光强度随束电压的增加而饱和,共掺杂了Pr~(3 )或Tb~(3 )的Y_2O_2S:Eu的阴极射线发光强度随束电压的升高而线性增加。对束电压依赖关系的这个差别可用下列假设来解释:Pr~(3 )或Tb~(3 )有效地俘获载流子,以致抑制了在能量漏损处载流子的消失效应,这种效应是引起发光强度饱和的原因。本文还讨论了用紫外激发敏化Eu~(3 )的电荷转移态而产生载流子的作用,这种作用可由Y_2O_2S:Eu陶瓷的光电导激发光谱来说明。  相似文献   

8.
Y2O3:Eu3+磷光体中的Eu3+在6100Å附近呈现很强的尖峰发射.这个磷光体虽然在阴极射线和短波紫外光(约2500Å激发下是十分有效的,但是对于长波紫外光激发却很不灵敏.Datta[2]於1967年报导在Y2O3:Eu3+磷光体中加入少量Bi3+,在3650Å长波紫外光激发下可增强Eu3+在6100Å的尖峰发射强度.  相似文献   

9.
采用高温固相反应利用原料CaCO3,MgO,SiO2和Eu2O3合成CaMgSi2O6:Eu3 样品,并研究了其结构特性、光谱特性.CaMgSi2O6:Eu3 属于单科晶系,基质掺入Eu离子后结构没有明显变化.CaMgSi2O6:Eu3 在147 nm真空紫外光激发下呈红色发射,发射主峰位于611 nm,是Eu3 的5D0→7F2跃迁的典型发射.当Eu3 的相对摩尔浓度在0.02到0.10 mol之间变化时,由相关数据可以发现有浓度猝灭现象发生.CaMgsi2O6:Eu2 在172 nm真空紫外光激发下呈蓝色发射,发射主峰位于452 nm,是Eu2 的5d→4f跃迁的典型发射.添加不同浓度的H3BO3后可大大提高样品的发光强度.  相似文献   

10.
对草酸作为沉淀剂制备的细颗粒红色荧光粉Y2 O3 ∶Eu3 + 进行结构和发光特性研究 ,结果表明 :其一次粒径为 2 0~ 30nm ,团聚尺寸D50 =0 .5 3μm。该荧光粉最大激发峰位于 2 5 2 .2nm ,较微米级荧光粉 2 33nm红移了 19.2nm ;最大的发射峰位于 6 12nm ,与微米级的相比几乎没有差别。Eu3 + 离子的掺入构成了发光中心 ,其最佳掺杂的质量分数为 9% ,荧光粉发光的猝灭浓度由微米级的 6 %提高到 9%。由于纳米晶存在表面缺陷和悬挂键 ,其亮度约为微米晶的 70 %左右 ,随着团聚尺寸的增加、煅烧温度的提高和助熔剂的加入 ,荧光粉的发光强度增大。包膜能部分消除表面缺陷和悬挂键 ,提高发光亮度。荧光粉的色坐标为x =0 .6 4 79,y =0 .344 2。  相似文献   

11.
纳米晶Y2O3:Eu3+红色荧光体的发光性质研究   总被引:8,自引:0,他引:8  
研究了纳米晶Y2 O3:Eu3 红色荧光体的发光性质。结果表明 :该荧光体最大激发峰位于 2 5 2 6nm ,最大发射峰位于 6 13 4nm ,随着团聚尺寸的增加、煅烧温度的提高和助熔剂的加入 ,Y2 O3:Eu3 红色荧光体的发光强度增大 ;包膜工艺消除了纳米晶Y2 O3:Eu3 红色荧光体的表面缺陷和悬挂键 ,改善了其发光特性。  相似文献   

12.
以甘氨酸快速燃烧法合成了一种新型红色荧光粉SrO·Y2O3:Eu,并用X射线粉末衍射(XRD)、扫描电子显微镜(SEM)及荧光分光光度计(FL)对样品的物相结构、微观形貌及粒度、光谱性质等进行了分析表征。结果表明:制得的样品含有SrY2O4和Y2O3两相,分别属于正交晶系和立方晶系。所合成样品颗粒为球形,一次颗粒粒径为100~200nm。样品的激发主峰在280nm处,为O2-的2p轨道到Eu3 的4f轨道的电荷迁移跃迁所致,主发射峰位于592nm,属于Eu3 的5D0→7F1跃迁,614nm处还有一较强的发射峰,归属于Eu3 的5D0→7F2跃迁。此外,研究发现甘氨酸与硝酸根配比、焙烧温度、Eu3 浓度等条件均对SrO·Y2O3:Eu的亮度有一定的影响。  相似文献   

13.
采用CaCO3,MgO,SiO2,Eu2O3原料,通过高温固相法制备了Ca3Mg3Si4O14:Eu2+荧光粉.通过XRD图谱和PL光谱图,研究了Eu的掺杂浓度与助溶剂(NH4Cl,BaF2)对Ca3Mg3Si4O14:Eu2+荧光粉结构、发光性能和热稳定的影响.XRD图谱对比结果表明,制备的Ca3Mg3Si4O14:Eu2+荧光粉XRD图与理论计算得到的图谱几乎一致.Ca3Mg3Si4O14:Eu2+荧光粉在360~450 nm有很强的激发强度,并且在440 nm激发下发射峰值波长为530 nm的发射光.随着Eu2+离子浓度的增加,发射光谱出现了红移,且在Eu2+离子浓度约为6%时发生了浓度猝灭现象.当添加NH4Cl和BaF2作为助溶剂,Ca3Mg3Si4O14:Eu2+荧光粉的发光强度有一定提高.与未添加助溶剂的Ca3Mg3Si4O14:Eu2+荧光粉的发光强度相比,添加NH4Cl助溶剂后发光强度增加了70%.此外,当温度升高至150 ℃时,Ca3Mg3Si4O14:Eu2+荧光粉和商用绿色荧光粉的发光强度分别降低了7.6%和14%,表明Ca3Mg3Si4O14:Eu2+荧光粉具有良好的热稳定性.这些发光性能均表明Ca3Mg3Si4O14:Eu2+荧光粉是是一种可应用于固态照明的有前景的绿色荧光粉.  相似文献   

14.
采用高温固相法合成了Ca3Y2-2x(Si3O9)2∶2xSm3+系列荧光粉,并表征了材料的发光特性.X射线衍射图谱表明:得到的样品为纯相Ca3Y2(Si3O9)2晶体;样品的激发光谱主要来源于Sm3+的特征激发;分别采用紫外、近紫外和蓝光作为激发源,样品均发射橙红光.在402nm近紫外光激发下,Ca3Y2(Si3O9)2∶Sm3+发射光谱主要由3个峰组成,发射峰值分别位于565nm、604nm和651nm,归属于Sm3+的4G5/2→6HJ/2(J=5,7,9)跃迁,其中发射主峰位于604nm处.通过时间分辨光谱测得Sm3+的4G5/2能级的荧光寿命.随着Sm3+摩尔浓度的增加,样品发光强度先增强后减弱,当x=0.02时发光强度达到最大,浓度猝灭机理为电偶极-电偶极相互作用.  相似文献   

15.
采用高温固相法合成了Ca3Y2-2x(Si3O9)2∶2xSm3+系列荧光粉,并表征了材料的发光特性.X射线衍射图谱表明:得到的样品为纯相Ca3Y2(Si3O9)2晶体;样品的激发光谱主要来源于Sm3+的特征激发;分别采用紫外、近紫外和蓝光作为激发源,样品均发射橙红光.在402 nm近紫外光激发下,Ca3Y2(Si3O9)2∶Sm3+发射光谱主要由3个峰组成,发射峰值分别位于565 nm、604 nm和651 nm,归属于Sm3+的4G5/2→6HJ/2(J=5, 7, 9)跃迁,其中发射主峰位于604 nm处.通过时间分辨光谱测得Sm3+的4G5/2能级的荧光寿命.随着Sm3+摩尔浓度的增加,样品发光强度先增强后减弱,当x=0.02时发光强度达到最大,浓度猝灭机理为电偶极-电偶极相互作用.  相似文献   

16.
采用均相沉淀法制备了Y(OH)3微米颗粒,经1 100℃焙烧后制备出具有上转换发光性质的Yb3+-Tm3+-Gd3+共掺的Y2O3微米晶体,讨论了Yb3+-Tm3+-Gd3+在Y2O3中能量传递过程及壳层对发光强度的影响。980 nm近红外光激发下的上转换光谱表明,在Yb3+-Tm3+-Gd3+共掺Y2O3体系中,核-壳结构大幅提高了Gd3+离子和Tm3+离子的上转换发光强度,尤其是样品在紫外发光部分的增强相比于可见和红外光部分更为明显。同时,通过研究Tm3+和Gd3+在不同波段的发光强度与泵浦功率的关系探讨了氧化物中上转换发光的机制。  相似文献   

17.
用均相沉淀法制备了纳米Y2O3:Eu3+样品。归纳了纳米Y2O3:Eu3+荧光强度降低的原因及提高途径。应用Judd-Ofelt理论从Y2O3:Eu3+的发射光谱编程计算了纳米与微米Y2O3:Eu3+的跃迁强度参数之比Ω′2/Ω2,比值均小于1,这表明纳米Y2O3:Eu3+颗粒的5D0→7F2电偶跃迁几率比微米材料小,5D0→7F2跃迁几率小则612nm的荧光强度低。因此纳米YO:Eu3+颗粒的荧光强度较微米材料低。  相似文献   

18.
采用水热法制备了Eu3+掺杂SnO2纳米发光粉,样品在不同温度下热处理得到不同粒径尺寸的纳米颗粒.利用X射线衍射(XRD)与光致发光(PL)谱对样品进行表征.XRD分析表明:SnO2:Eu3+样品均为纯相金红石结构.PL测量表明:水热法直接制备的样品的激发谱由Eu3+的f-f本征激发峰组成,而经过热处理后样品的激发谱由O2--Eu3+电荷迁移带和Eu3+的f-f本征激发组成;样品的发光强度与颗粒大小有密切关系.  相似文献   

19.
采用溶胶-凝胶法制备了不同浓度Eu3 掺杂的CeO2发光粉,样品粉末在紫外光激发下发出明亮的橙红色光.利用X射线衍射(XRD)、热重-差热分析(TG-DTA)和光致发光光谱(PL)对样品的结晶过程和发光性质进行了表征.XRD分析表明在0.2at.%~10at.%的Eu3 掺杂范围内,用溶胶-凝胶法合成的样品在500℃就结晶成纯相的CeO2:Eu3 多晶粉末.由于Ce4 和Eu3 离子半径十分接近,因而Eu3 在CeO2中具有较高的固溶度.PL激发谱中出现在300~390 nm的宽带激发峰起源于基质CeO2的吸收,电子吸收能量后,发生O2--Ce4 的电荷迁移,再将能量传递给Eu3 .PL发射谱显示Eu3 含量为6at.%的样品发光强度最强,随后出现浓度猝灭.导致发光出现浓度猝灭的机制是电偶极-电四极相互作用.样品烧结温度的升高,促使晶粒长大和结晶完整性提高,从而显著提高了CeO2:Eu3 粉末的发光强度.  相似文献   

20.
采用高温固相反应法合成了掺杂Eu3 及Tb3 的17MO-7.88Y2O3-75B2O3样品,研究了它们的光谱特性,结果表明,MO-T2O3-B2O3基质在真空紫外(VUV)区有很强的吸收,MgO-Y2O3-B2O3:Eu在147nm真空紫外光激发下产生对应于Eu3 的5D0→7FJ(J=1,2,3,4)跃迁的590和613 nm强发射峰;MgO-Y2O3-B2O3:Eu中Sr的引入使材料体系在147 nm附近的吸收和在613 nm附近的发射获得明显增强;MgO-Y2O3-B2O3:Tb的真空紫外激发谱除在147 nm附近的基质吸收外,还有对应于Tb3 的4f75d→4f8跃迁位于170,178,195,204,225 nm左右的一组谱峰,两者相互叠加使得材料在真空紫外区(120~220 nm)内都有很好的吸收.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号