首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
流体饱和标准线性粘弹性多孔介质中的平面波   总被引:4,自引:1,他引:3  
研究了流体饱和不可压标准线性粘弹性多孔介质中平面波的传播和反射问题.在固相骨架小变形的假定下,得到了粘弹性多孔介质中波动方程的一般解,讨论了弥散关系和波的衰减特性.结果表明:在流体饱和不可压粘弹性多孔介质中,仅存在一个耦合纵波和一个耦合横波,纵波和横波的波速、衰减率等取决于孔隙流体与固相骨架间的相互作用以及固相骨架本身的粘性.同时,研究了半空间自由边界上入射波(纵波、横波)的反射问题。得到了非均匀反射波的波速、反射系数、衰减率等的表达式及其相关的数值结果.  相似文献   

2.
The theory of Tuncay and Corapcioglu (Transp Porous Media 23:237–258, 1996a) has been employed to investigate the possibility of plane wave propagation in a fractured porous medium containing two immiscible fluids. Solid phase of the porous medium is assumed to be linearly elastic, isotropic and the fractures are assumed to be distributed isotropically throughout the medium. It has been shown that there can exist four compressional waves and one rotational wave. The phase speeds of these waves are found to be affected by the presence of fractures, in general. Of the four compressional waves, one arises due to the presence of fractures in the medium and the remaining three are those encountered by Tuncay and Corapcioglu (J Appl Mech 64:313–319, 1997). Reflection and transmission phenomena at a plane interface between a uniform elastic half-space and a fractured porous half-space containing two immiscible fluids, are analyzed due to incidence of plane longitudinal/transverse wave from uniform elastic half-space. Variation of modulus of amplitude and energy ratios with the angle of incidence are computed numerically by taking the elastic half-space as granite and the fractured porous half-space as sandstone material containing non-viscous wetting and non-wetting fluid phases. The results obtained in case of porous half-space with fractures, are compared graphically with those in case of porous half-space without fractures. It is found that the presence of fractures in the porous half-space do affect the reflection/transmission of waves, which is responsible for raising the reflection and lowering the transmission coefficients.  相似文献   

3.
饱和黏弹性多孔介质中的平面波及能量耗散   总被引:4,自引:0,他引:4  
杨骁  车京兰 《力学学报》2005,37(5):579-585
研究了流体饱和不可压黏弹性多孔介质中的非均匀平面波及其能量流和能量耗散规律. 在流 相和固相物质微观不可压、固相骨架宏观服从积分型本构关系和小变形的假定下,利用 Helmholtz分解,得到了饱和黏弹性多孔介质中非均匀平面波的一般解以及纵波、横波相速 度和衰减率等的解析表达式,分析了平面波传播矢量和衰减矢量之间的关系. 数值结果表明 孔隙流体与固相骨架间的相互作用以及固相骨架的黏性对波的相速度、衰减率等有着显著的 影响. 同时,得到了饱和黏弹性多孔介质的能量方程,给出了能量流矢量和能量耗散率. 对 非均匀平面纵波和横波,推导了平均能量流矢量和平均能量耗散率的解析表达式.  相似文献   

4.
横观各向同性液体饱和多孔介质中平面波的传播   总被引:11,自引:2,他引:11  
汪越胜  章梓茂 《力学学报》1997,29(3):257-268
基于孔隙介质的Biot理论1,研究了横观各向同性液体饱和多孔介质中平面波的传播特性。首先导出了波传播的特征方程并给出了其解析解,结果显示:有4种不同波速的平面体波传播;第一准纵波,第二准纵波,准横波和反平面横波。文中给出了波速和衰减的解析表达式,数值计算了频散曲线和衰减曲线,并讨论了各类准体波位移之间的耦合关系。  相似文献   

5.
Wave propagation in a porous elastic medium saturated by two immiscible fluids is investigated. It is shown that there exist three dilatational waves and one transverse wave propagating with different velocities. It is found that the velocities of all the three longitudinal waves are influenced by the capillary pressure, while the velocity of transverse wave does not at all. The problem of reflection and refraction phenomena due to longitudinal and transverse wave incident obliquely at a plane interface between uniform elastic solid half-space and porous elastic half-space saturated by two immiscible fluids has been analyzed. The amplitude ratios of various reflected and refracted waves are found to be continuous functions of the angle of incidence. Expression of energy ratios of various reflected and refracted waves are derived in closed form. The amplitude ratios and energy ratios have been computed numerically for a particular model and the results obtained are depicted graphically. It is verified that during transmission there is no dissipation of energy at the interface. Some particular cases have also been reduced from the present formulation.  相似文献   

6.
The propagation of elastic waves is studied in a porous solid saturated with two immiscible viscous fluids.The propagation of three longitudinal waves is represented through three scalar potential functions.The lone transverse wave is presented by a vector potential function.The displacements of particles in different phases of the aggregate are defined in terms of these potential functions.It is shown that there exist three longitudinal waves and one transverse wave.The phenomena of reflection and refraction due to longitudinal and transverse waves at a plane interface between an elastic solid half-space and a porous solid half-space saturated with two immiscible viscous fluids are investigated.For the presence of viscosity in pore-fluids,the waves refracted to the porous medium attenuate in the direction normal to the interface.The ratios of the amplitudes of the reflected and refracted waves to that of the incident wave are calculated as a nonsingular system of linear algebraic equations.These amplitude ratios are used to further calculate the shares of different scattered waves in the energy of the incident wave.The modulus of the amplitude and the energy ratios with the angle of incidence are computed for a particular numerical model.The conservation of the energy across the interface is verified.The effects of variations in non-wet saturation of pores and frequencies on the energy partition are depicted graphically and discussed.  相似文献   

7.
基于Biot理论和双重孔隙介质理论研究了弹性波在双重孔隙介质与流体饱和单一孔隙介质 界面的反射和透射问题,在界面上假定裂缝孔隙流体相对于固体骨架的位移为零,推导了反 射系数和透射系数的计算公式,数值讨论了反射系数和透射系数随入射角和频率的变化关 系. 同时,讨论了双重孔隙介质中3种压缩波(P-1, P-2和P-3波)和一种剪切波(S波) 的频散和衰减特性.  相似文献   

8.
An investigation is made into the propagation and evolution of wave fronts in a porous medium which is intended to contain two phases: the porous solid, referred to as the skeleton, and the fluid within the interconnected pores formed by the skeleton. In particular, the microscopic density of each real material is assumed to be unchangeable, while the macroscopic density of each phase may change, associated with the volume fractions. A two-phase porous medium model is concisely introduced based on the work by de Boer. Propagation conditions and amplitude evolution of the discontinuity waves are presented by use of the idea of surfaces of discontinuity, where the wave front is treated as a surface of discontinuity. It is demonstrated that the saturation condition entails certain restrictions between the amplitudes of the longitudinal waves in the solid and fluid phases. Two propagation velocities are attained upon examining the existence of the discontinuity waves. It is found that a completely coupled longitudinal wave and a pure transverse wave are realizable in the two-phase porous medium. The discontinuity strength of the pore-pressure may be determined by the amplitude of the coupled longitudinal wave. In the case of homogeneous weak discontinuities, explicit evolution equations of the amplitudes for two types of discontinuity waves are derived.  相似文献   

9.
In this paper, the governing relations and equations are derived for nonlocal elastic solid with voids. The propagation of time harmonic plane waves is investigated in an infinite nonlocal elastic solid material with voids. It has been found that three basic waves consisting of two sets of coupled longitudinal waves and one independent transverse wave may travel with distinct speeds. The sets of coupled waves are found to be dispersive, attenuating and influenced by the presence of voids and nonlocality parameters in the medium. The transverse wave is dispersive but non-attenuating, influenced by the nonlocality and independent of void parameters. Furthermore, the transverse wave is found to face critical frequency, while the coupled waves may face critical frequencies conditionally. Beyond each critical frequency, the respective wave is no more a propagating wave. Reflection phenomenon of an incident coupled longitudinal waves from stress-free boundary surface of a nonlocal elastic solid half-space with voids has also been studied. Using appropriate boundary conditions, the formulae for various reflection coefficients and their respective energy ratios are presented. For a particular model, the effects of non-locality and dissipation parameter (\(\tau \)) have been depicted on phase speeds and attenuation coefficients of propagating waves. The effect of nonlocality on reflection coefficients has also been observed and shown graphically.  相似文献   

10.
This study discusses wave propagation in perhaps the most general model of a poroelastic medium. The medium is considered as a viscoelastic, anisotropic and porous solid frame such that its pores of anisotropic permeability are filled with a viscous fluid. The anisotropy considered is of general type, and the attenuating waves in the medium are treated as the inhomogeneous waves. The complex slowness vector is resolved to define the phase velocity, homogeneous attenuation, inhomogeneous attenuation, and angle of attenuation for each of the four attenuating waves in the medium. A non-dimensional parameter measures the deviation of an inhomogeneous wave from its homogeneous version. An numerical model of a North-Sea sandstone is used to analyze the effects of the propagation direction, inhomogeneity parameter, frequency regime, anisotropy symmetry, anelasticity of the frame, and viscosity of the pore-fluid on the propagation characteristics of waves in such a medium.  相似文献   

11.
Analytical solutions are obtained for two problems of transverse internal waves in a viscous fluid contacting with a flat layer of a fixed porous medium. In the first problem, the waves are considered which are caused by the motion of an infinite flat plate located on the fluid surface and performing harmonic oscillations in its plane. In the second problem, the waves are caused by periodic shear stresses applied to the free surface of the fluid. To describe the fluid motion in the porous medium, the unsteady Brinkman equation is used, and the motion of the fluid outside the porous medium is described by the Navier–Stokes equation. Examples of numerical calculations of the fluid velocity and filtration velocity profiles are presented. The existence of fluid layers with counter-directed velocities is revealed.  相似文献   

12.
Based on the poroelasticity theory, this article investigates the reflection and transmission characteristics of an incident plane transverse wave at a plane interface between an isotropic elastic half-space and an unsaturated poroelastic solid half-space. For this purpose, the effect of the saturation degree and frequency on the properties of the four bulk waves in unsaturated porous medium, i.e., three longitudinal waves and one transverse wave, are discussed at first. Two general cases of mode conversion are considered: (i) The initial transverse wave is incident from an unsaturated poroelastic half-space to the interface, and (ii) the initial transverse wave is incident from an elastic solid half-space to the interface. The expressions for the partition of energy at the interface during transmission and reflection process of waves are presented in explicit forms. At last, numerical computations are performed for these two cases and the results obtained are depicted, respectively. The variation of the amplitude ratios and energy ratios with the saturation degree and incident angle is illustrated in detail. It is also verified that, at the interface, the sum of energy ratios is approximately equal to unity as expected.  相似文献   

13.
Time harmonic waves in a swelling porous elastic medium of infinite extent and consisting of solid, liquid and gas phases have been studied. Employing Eringen’s theory of swelling porous media, it has been shown that there exist three dilatational and two shear waves propagating with distinct velocities. The velocities of these waves are found to be frequency dependent and complex valued, showing that the waves are attenuating in nature. Here, the appearance of an additional shear wave is new and arises due to swelling phenomena of the medium, which disappears in the absence of swelling. The reflection phenomenon of an incident dilatational wave from a stress-free plane boundary of a porous elastic half-space has been investigated for two types of boundary surfaces: (i) surface having open pores and (ii) surface having sealed pores. Using appropriate boundary conditions for these boundary surfaces, the equations giving the reflection coefficients corresponding to various reflected waves are presented. Numerical computations are performed for a specific model consisting of sandstone, water and carbon dioxide as solid, liquid and gas phases, respectively, of the porous medium. The variations of phase speeds and their corresponding attenuation coefficients are depicted against frequency parameter for all the existing waves. The variations of reflection coefficients and corresponding energy ratios against the angle of incidence are also computed and depicted graphically. It has been shown that in a limiting case, Eringen’s theory of swelling porous media reduces to Tuncay and Corapcioglu theory of porous media containing two immiscible fluids. The various numerical results under these two theories have been compared graphically.  相似文献   

14.
In this paper, the reflection of a plane wave at a traction free boundary of a half -space composed of triclinic crystalline material is considered. It is shown that an incident plane wave generates three plane waves, namely quasi-P (qP), quasi-SV (qSV) and quasi-SH (qSH) waves governed by the propagation condition involving the acoustic tensor. A simple procedure is presented for the calculation of all the three phase velocities of these waves. It is demonstrated that the direction of particle motion is neither parallel nor perpendicular to the direction of propagation. A procedure is established for the calculation of the amplitude vector in terms of the phase velocity, the propagation vector, and the stiffness coefficients of the medium. Closed form solutions are obtained for the reflection coefficients of qP, qSV and qSH waves. Using the parameters of Vosges sandstone exhibiting triclinic symmetry, the graphical representations of the reflection coefficients due to an incident qP wave are given. It is observed that, in triclinic medium, the reflection coefficients are significantly different from those in an isotropic medium.  相似文献   

15.
The features of propagation of longitudinal and transverse waves (LW and TW) in fractured porous medium (FPM) saturated with liquid are investigated by methods of multiphase mechanics. The mathematical model of FPM accounting for inequality of velocities and pressures of liquid in pores and fractures, liquid mass exchange and nonstationary interaction forces is developed. Processes of monochromatic wave propagation are studied. The dispersion relation is obtained and the effect of model parameters on wave propagation is analysed. It is established that one transverse and three longitudinal waves propagate in FPM saturated with liquid. The fastest LW is a deformational wave and the two others are filtrational. Filtrational waves attenuate much stronger than deformational and transverse waves. Distinction of velocities and pressures in liquid in various pore systems provides an explanation for the existence of the two filtrational waves in porous medium with two different characteristic sizes of pores.  相似文献   

16.
The possibility of plane wave propagation in a micropolar fluid of infinite extent has been explored. The reflection and transmission of longitudinal elastic wave at a plane interface between a homogeneous micropolar fluid half-space and a micropolar solid half-space has also been investigated. It is found that there can exist four plane waves propagating with distinct phase speeds in an infinite micropolar fluid. All the four waves are found to be dispersive and attenuated. The reflection and transmission coefficients are found to be the functions of the angle of incidence, the elastic properties of the half-spaces and the frequency of the incident wave. The expressions of energy ratios have also been obtained in explicit form. Frequency equation for the Stoneley wave at micropolar solid/fluid interface has also been derived in the form of sixth-order determinantal expression, which is found in full agreement with the corresponding result of inviscid liquid/elastic solid interface. Numerical computations have been performed for a specific model. The dispersion curves and attenuation of the existed waves in micropolar fluid have been computed and depicted graphically. The variations of various amplitudes and energy ratios are also shown against the angle of incidence. Results of some earlier workers have been deduced from the present formulation.  相似文献   

17.
Wave propagation in porous piezoelectric material (PPM), having crystal symmetry 6 mm, is studied analytically. Christoffel equation is derived for the propagation of plane harmonic waves in such a medium. The roots of this equation give four complex wave velocities which can propagate in such materials. The phase velocities of propagation and the attenuation quality factors of all these waves are described in terms of complex wave velocities. Phase velocities and attenuation of the waves in PPM depend on the phase direction. Numerical results are computed for the PPM BaTiO3. The variation of phase velocity and attenuation quality factor with phase direction, porosity and the wave frequency is studied. The effects of anisotropy and piezoelectric coupling are also studied. The phase velocities of two quasi dilatational waves and one quasi shear waves get affected due to piezoelectric coupling while that of type 2 quasi shear wave remain unaffected. The phase velocities of all the four waves show non-dispersive behavior after certain critical high frequency. The phase velocity of all waves decreases with porosity while attenuation of respective waves increases with porosity of the medium. The characteristic curves, including slowness curves, velocity curves, and the attenuation curves, are also studied in this paper.  相似文献   

18.
Viscous fluid flow induced by rotational-oscillatorymotion of a porous sphere submerged in the fluid is determined. The Darcy formula for the viscous medium drag is supplementedwith a term that allows for the medium motion. The medium motion is also included in the boundary conditions. Exact analytical solutions are obtained for the time-dependent Brinkman equation in the region inside the sphere and for the Navier–Stokes equations outside the body. The existence of internal transverse waves in the fluid is shown; in these waves the velocity is perpendicular to the wave propagation direction. The waves are standing inside the sphere and traveling outside of it. The particular cases of low and high oscillation frequencies are considered.  相似文献   

19.
The propagation of plane vertical transverse waves at an interface of a semi-infinite piezoelectric elastic medium under the influence of the initial stresses is discussed. The free surface of the piezoelectric elastic medium is considered to be adjacent to vacuum. We assumed that the piezoelectric material is anisotropic of the type of a transversely isotropic crystals (hexagonal crystal structure, class 6 mm). For an incident of vertical transverse plane wave, four types (two for the displacement and two for the electric potential) of reflected plane waves, called quasi-longitudinal (qP) and quasi-shear vertical (qSV) waves are shown to be exist. The relations governing the reflection coefficients of these reflected waves for various boundary conditions (mixed-free-fixed) are derived. It has been shown analytically that reflected coefficients of (qP) and (qSV) waves depend upon the angle of incidence, the parameters of electric potential, the material constants of the medium as well as the initial stresses presented in the medium. The numerical computations of reflection coefficients for different values of initial stresses have been carried out by computer for aluminum nitride (AlN) as an example and the results are given in the form of graphs. Finally, particular cases are considered in the absence of the initial stresses and the electric potential. Some of earlier studies have been compared to the special cases and shown good agreement with them.  相似文献   

20.
Frequency dependences of the velocity and attenuation coefficients of the waves propagating along a flat interface between a saturated porous medium and gas (vacuum) are studied. It is shown that the propagation of one or two surface modes is possible, depending on the parameters of the saturated porous medium and the conditions on the interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号