首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
射频磁控溅射制备纳米TiO2薄膜的光电化学行为   总被引:2,自引:0,他引:2  
在室温下采用射频磁控溅射法制备了纳米晶粒的TiO2薄膜,用循环伏安法研究了ITO/TiO2薄膜电极的光电化学行为,并测量了相应TiO2薄膜的亲水性与光催化能力.结果表明,在室温下制备的TiO2薄膜为无定形结构,当退火温度超过400 ℃时转化为锐钛矿结构.在400 ℃下退火的TiO2薄膜具有良好的亲水性和光催化能力. TiO2薄膜电极用254 nm的紫外光照射一定时间后会产生新的氧化峰,且随着光照时间的增加,峰电流也增加.初步认为用紫外光照射一定时间后, TiO2薄膜的循环伏安图的氧化峰属于光生的Ti3+,而光致亲水性可能与Ti3+的生成有关.  相似文献   

2.
Vacuum anneal induced changes in the surface layers of electrodeposited copper(I) oxide (Cu2O) were probed by time-of-flight positron annihilation induced Auger electron spectroscopy (TOF-PAES) and by electron induced Auger electron spectroscopy (EAES). Large changes in the intensity of the Cu PAES intensity resulting from isochronal in situ vacuum anneals made at increasing temperatures indicated that, before thermal treatment, the surface was completely covered by a carbonaceous overlayer and that this layer was removed, starting at a temperature between 100 and 200 degrees C, to expose an increasing amount of Cu in the top layer as the anneal temperature was increased. The thickness of this overlayer was estimated to be approximately 4 A based on analysis of the EAES data, and its variation with the thermal anneal temperature was mapped. This study demonstrated the order-of-magnitude enhancement in the sensitivity of PAES to the topmost surface layer in Cu2O relative to the EAES counterpart; factors underlying this contrast are discussed. Finally, the implications of ultrathin carbon layers on semiconductor surfaces are discussed.  相似文献   

3.
The development of stress in the SrBi2Ta2O9 (SBT) films generated from a chemical solution deposition method was monitored during processing using wafer curvature measurements. Stress measurements of the entire Si/SiO2/Pt/SBT stack revealed an overall tensile stress of 536 MPa. The greatest increase in tensile stress was recorded for the anneal of the Pt bottom electrode and was due to the thermal expansion mismatch. Deposition of an amorphous SBT layer on the Pt, followed by a low temperature anneal (300°C), had little overall effect on the stress of the stack; however, upon crystallization, significantly more tensile stress was introduced into the stack. To further investigate the effect that stress has on the various electrical properties SBT films, wafers with different stress states were produced and SBT films deposited on them. Initial investigations indicate that SBT films on wafers with a higher tensile stress displayed improved ferroelectric hysteresis and switchable polarization.  相似文献   

4.
On the basis of the polarization, corrosion, and radiotracer measurements it is established that the optimum conditions for the deposition of active coatings consisting of IrO2 and IrO2 + TiO2 onto titanium anodes are the performing of the pyrolysis in air at T = 350°C for 15 min with a final anneal in the same environment at T = 450°C for 1 h. Removing the final anneal or reducing its temperature enhances the catalytic activity of the anodes but at the same time reduce their corrosion resistance. Raising the anneal temperature above 450°C makes no sense, as the catalytic activity of the anodes toward the chlorine evolution reaction substantially diminishes and the titanium support undergoes oxidation starting with 500°C.  相似文献   

5.
Using density functional theory calculations, we have studied the morphology of a Pt37 nanoparticle supported on carbon with and without hydrogen (H) passivation that arises with postprocessing of nanoparticles before characterization. Upon heating in an anneal cycle, we find that without H (e.g., in a helium atmosphere or evacuation at high temperature), the morphology change of a truncated cuboctahedral Pt37 is driven by the shearing of (100) to (111) facets to lower the surface energy, a remnant shear instability that drives surface reconstruction in semi-infinite Pt(100). With H passivation from a postprocessing anneal, we show that the sheared structure automatically reverts to the observed truncated cuboctahedral structure and the average first nearest-neighbor Pt-Pt bond length increases by 3%, agreeing well with experiment. We explain the stabilization of the truncated cuboctahedral structure due to H passivation via adsorption energetics of hydrogen on Pt(100) and (111) facets, specifically, the preference for H adsorption at bridge sites on (100) facets, which should be considered in a realistic model for H adsorption on Pt nanoparticles. We find that dramatic morphological change of a nanoparticle can occur even with small changes to first-shell Pt-Pt coordination number. The implications of our findings when comparing to experimental data are discussed.  相似文献   

6.
Simple polishing and relatively low temperature annealing procedures for preparing atomically flat terraced surfaces of various single-crystal TiO2 polymorphs are described. Anatase (101), anatase (001), rutile (100), rutile (110), and brookite (111) surfaces could all be prepared with a terraced surface structure as revealed in AFM images. The rutile (100) and (110) and anatase (101) surfaces were also shown to produce acceptable LEED patterns immediately upon insertion into a UHV system without the usual sputter and anneal cycles.  相似文献   

7.
Steger HF 《Talanta》1983,30(9):717-720
The end-point for the titration of EDTA with Cu(II), as measured by a Cu(II)-selective electrode, varies with pH and temperature. Moreover, the effect of pH and temperature on the behaviour of this electrode differs according to whether fluoride is present. As a consequence, the determination of aluminium in zinc-aluminium alloys by the Freegarde and Allen method with use of a Cu(II)-selective electrode must be performed with close control of pH and temperature to maximize accuracy and repeatability.  相似文献   

8.
The double melting endotherm of spunbonded isotactic polypropylene (iPP) fabrics was investigated by monitoring changes in the solid-state NMR spectrum that result from thermal annealing. The DSC melting thermogram was found to change from a double to a single endotherm at anneal temperatures ≥156°C, with a concomitant increase in percent crystallinity. All of the carbon resonances in the CP/MAS NMR spectrum of the purely crystalline phase of iPP were found to be composed of multiple peaks with relative intensities that depend on anneal temperature. By monitoring the changes in the distribution of intensity among the various peaks of a given resonance, a transition temperature of 156°C was identified. Arguments are presented that this redistribution of intensity within a given carbon resonance characterizes the transformation from the α1 to the α2 monoclinic crystal form. The exothermicity associated with this transformation is responsible for the observation of a double melting endotherm by DSC. The splitting patterns observed in the NMR spectrum are discussed in terms of interlayer distances between layers of isochiral helices and the density of exposed methyls at the contact faces of these interlayers. © 1996 John Wiley & Sons, Inc.  相似文献   

9.
In this report we describe an electrochemical DNA hybridization sensor approach, in which signal amplification is achieved using heated electrodes together with an enzyme as DNA-label. On the surface of the heatable low temperature co-fired ceramic (LTCC) gold electrode, an immobilized thiolated capture probe was hybridized with a biotinylated target using alkaline phosphatase (SA-ALP) as reporter molecule. The enzyme label converted the redox-inactive substrate 1-naphthyl phosphate (NAP) into the redox-active 1-naphthol voltammetrically determined at the modified gold LTCC electrode. During the measurement only the electrode was heated leaving the bulk solution at ambient temperature. Elevated temperature during detection led to increased enzyme activity and enhanced analytical signals for DNA hybridization detection. The limit of detection at 53 °C electrode temperature was 1.2 nmol/L.  相似文献   

10.
In this paper, an ECL detection system equipped with an electrically heating controlled cylindrical microelectrode (HME) was used to study the ECL behavior of lucigenin. The ECL intensity of lucigenin would be increased at elevated electrode temperature but the noise had not been increased. It was found that ECL intensity at higher temperature of electrode surface (80 °C) was more than two magnitudes stronger than that at the room temperature (22 °C). The detection limit for ECL of lucigenin on a HME is much lower than that on an electrode without heating, based on which, it is possible to establish a more sensitive method for measurement of ECL by using a HME. The heating of electrode has been used to renew the electrode, which avoid the tedious work for refreshing the electrode surface. The reproducibility of lucigenin ECL system at HME is satisfactory.  相似文献   

11.
The interface between a Pt(111) electrode and a room temperature ionic liquid, 1-ethyl-2,3-dimethylimidazolium bis(trifluoromethylsulfonyl)imide, was investigated with the laser-induced temperature jump method. In this technique, the temperature of the interface is suddenly increased by applying short laser pulses. The change of the electrode potential caused by the thermal perturbation is measured under coulostatic conditions during the subsequent temperature relaxation. This change is mainly related to the reorganization of the solvent components near the electrode surface. The sign of the potential transient depends on the potential of the experiment. At high potential values, positive transients indicate a higher density of anions than cations close the surface, contributing negatively to the potential of the electrode. Decreasing the applied potential to sufficiently low values, the transient becomes negative, meaning that the density of cations becomes then higher at the surface of the electrode. The potential dependence of the interfacial response shows a marked hysteresis depending on the direction in which the applied potential is changed.  相似文献   

12.
原鲜霞  徐乃欣 《电化学》2001,7(3):321-325
应用电化学阻抗法测定了不同荷电状态 (SOC)和不同温度下MlNi3.75Co0 .65Mn0 .4 Al0 .2 金属氢化物电极中氢的扩散系数 .结果表明 :室温下该电极中氢的扩散系数随其荷电量的增大而减小 ,SOC为 5 0 %时氢的扩散系数随温度的升高而增大 ,相应的氢扩散活化能为 35kJ/mo  相似文献   

13.
Molecular dynamics simulation studies of the structure and the differential capacitance (DC) for the ionic liquid (IL) N-methyl-N-propylpyrrolidinium bis(trifluoromethane)sulfonyl imide ([pyr(13)][TFSI]) near a graphite electrode have been performed as a function temperature and electrode potential. The IL exhibits a multilayer structure that extends 20-30 ? from the electrode surface. The composition and ion orientation in the innermost layer were found to be strongly dependent on the electrode potential. While at potentials near the potential of zero charge (PZC), both cations and anions adjacent to the surface are oriented primarily perpendicular to the surface, the counterions in first layer orient increasingly parallel to the surface with increasing electrode potential. A minimum in DC observed around -1 V(RPZC) (potential relative to the PZC) corresponds to the point of highest density of perpendicularly aligned TFSI near the electrode. Maxima in the DC observed around +1.5 and -2.5 V(RPZC) are associated with the onset of "saturation", or crowding, of the interfacial layer. The asymmetry of DC versus electrode polarity is the result of strong interactions between the fluorine of TFSI and the surface, the relatively large footprint of TFSI compared to pyr(13), and the tendency of the propyl tails of pyr(13) to remain adsorbed on the surface even at high positive potentials. Finally, an observed decreased DC and the disappearance of the minimum in DC near the PZC with increasing temperature are likely due to the increasing importance of entropic/excluded volume effects (interfacial crowding) with increasing temperature.  相似文献   

14.
填充粒子对复合型导电硅橡胶电阻温度特性的影响   总被引:7,自引:1,他引:6  
研究了炭黑填充复合型导电硅橡胶的电阻温度特性,分析了升温过程中导电硅橡胶电阻特性的详细变化过程。研究了导电粒子和白炭黑含量对导电硅橡胶电阻温度特性的影响,测量了在不同热处理温度下电阻率的变化及加力时电阻的驰豫时间。分析了热处理对电阻特性影响的机理。  相似文献   

15.
以自制的BiVO4纳米粉制备膜电极, 采用电化学方法较系统地研究了退火温度和膜厚对BiVO4膜电极的光电化学行为和电子输运与复合的影响. 结果表明: 退火温度和膜厚对BiVO4膜电极的光电特性有显著的影响. 膜厚为6.75 μm时, BiVO4膜电极具有最佳的光电化学特性. 退火温度低于500 °C时, 膜电极的光电活性随着温度的升高而增强, 至500 °C时达到最大值; 此后膜电极内的体相缺陷明显增加, 导致其光电活性逐渐降低. BiVO4膜电极有良好的可见光光电转换效率, 并利用其单色光转换效率曲线计算得到BiVO4的带隙为2.36eV, 采用莫特-肖特基电化学法测得其平带电位为-0.7 V (vs Ag/AgCl). 上述结果为BiVO4光催化体系的优化提供了重要的参考.  相似文献   

16.
The modification of synthetic nanotubes of magnesium hydrosilicate with a chrysotile structure by successive treatment with titanium tetrachloride and water vapors was studied. The effect exerted by temperature of the preliminary anneal within 200?C500°C on the modification of a nanotubular matrix was determined by the thermogravimetric and chemical analyses, X-ray diffraction, and by the diffuse reflectance spectroscopy.  相似文献   

17.
Wei H  Sun JJ  Wang YM  Li X  Chen GN 《The Analyst》2008,133(11):1619-1624
A disposable heated screen-printed carbon electrode (HSPCE) is successfully fabricated. It demonstrates rapid responses to electrical heating and is easily elevated above the water boiling point by a high frequency alternating current. The temperature rise at the HSPCE was found to be strongly dependent on the square of the heating current and the electrode width. Carbofuran (CAF) could be rapidly hydrolyzed to carbofuran phenol at the HSPCE with raised temperature, and then determined at the same electrode at room temperature by differential potential voltammetry (DPV). The factors influencing the detection were examined, including pH, hydrolytic temperature and heating time. Under the optimum conditions, the detection linear range of CAF was from 4.0 x 10(-7) to 4.0 x 10(-4) mol L(-1) and the detection limit was 5.0 x 10(-8) mol L(-1) (S/N = 3). This method was successfully applied to the analysis of CAF residues in real samples (spiked water, soil and vegetables), and satisfactory recoveries were obtained.  相似文献   

18.
Chen Y  Lin Z  Sun J  Chen G 《Electrophoresis》2007,28(18):3250-3259
An electrochemiluminescent (ECL) detection system in CE with an electrically heated carbon paste electrode (CPE) was developed. This CPE could be heated by a 100 kHz alternating current (ac) generated from a function generator, and the temperature of the electrode (Te) could be controlled. To evaluate the feasibility and reliability of this system, the electrochemically generated Ru(bpy)(3) (3+)-based ECL reaction was used for detection of triethylamine (TEA) and tri-n-propylamine (TPrA). Ru(bpy)(3) (2+) was added into the separation buffer solution with precolumn mode. Effects of several important factors were investigated to acquire the optimum conditions. Under the optimum conditions, the heated electrode has been shown to provide advantages by the measurement of ECL intensity in CE at elevated Te. Compared with the conventional electrode at the room temperature, using heated CPE could improve peak shape and gain good reproducibility with lower detection limits and wider linearity ranges. Compared with the room temperature, the linear ranges and detection limits (S/N = 3) for TEA and TPrA were improved about one magnitude when the Te was 39 degrees C. In contrast, the RSD was lower than for the electrode at room temperature.  相似文献   

19.
A new approach for studying the effect of temperature on electrochemical processes is presented in this paper. Using an in-house developed electrode holder, experiments are performed under conditions of applied and controlled electrode temperature. This new approach provides an improved temperature control during the experimental study and, additionally, allows distinguishing both the influences of the electrolyte and electrode temperatures. The advantages of the applied electrode temperature approach are illustrated by considering porous anodizing of aluminium. In a broad temperature range the electrochemical behaviour of the aluminium electrodes, recorded during the new and the conventional way of anodizing, are compared. Differences between the anodic potential evolutions in both approaches are observed, and are explained by a heat flux to the surroundings during the experiments at uncontrolled electrode temperature. These results illustrate the advantage of applying the electrode temperature. If the influence of temperature on a process is investigated by merely varying the electrolyte temperature, the electrode temperature is only indirectly influenced and can significantly differ from the electrolyte temperature. Therefore, when evaluating the influence of temperature on an electrochemical system the electrode temperature should be considered, and preferentially also controlled.  相似文献   

20.
This work presents a comprehensive study for the electrochemical behaviors of zirconium in LiCl-KCl eutectic.The effects of stirring,temperature and Zr concentration on the electrode reactions,the ZrCl_4 sublimation from the melt,microcosmic morphologies of Zr deposits(ZrCl and Zr)obtained at different potential and temperature have been investigated.The behaviors of Zr(Ⅳ),on a large concentration range from 0.13%to 2.28%in melt,show a multiple-step reaction involving Zr(Ⅳ),Zr(Ⅱ),ZrCl and Zr species.Temperature plays a crucial role on the changes of Zr(IV)reduction behavior on the solid electrode.The Zr(Ⅳ)/ZrCl couple is more easily observed at lower temperature and gradually diminishes with the increase of temperature.The Zr(Ⅳ)/Zr(Ⅱ)and Zr(Ⅱ)/Zr reactions are predominant on the W electrode at higher temperatures.At 673 K,a layered structure of insoluble ZrCl formed by potentiostatic electrolyses at 1.1 V was visualized by scanning electron microscopy-energy dispersive X-ray(SEM-EDS),while only Zr metal particles was observed at higher temperature than 773 K.An evolution of the Zr-based structure and size corresponding to the ZrCl and Zr metal based on different potentiostatic electrolysis was observed.The average particle size of the Zr metalparticles increases with the increase of temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号