首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The optical effects of liquid crystals can be realized when the mesogens are dispersed in a supporting and stabilizing polymer phase. Thermoplastics were chosen for their structural reversibility and ease of fabrication of polymer‐dispersed liquid crystals (PDLCs) from solution via solvent‐induced phase separation (SIPS). The component match and tuning in PDLCs was achieved in a common solvent through predictions of solubility parameters. The PDLCs were first prepared using SIPS and were then exposed to thermal treatments on a hot stage polarizing microscope or in a differential scanning calorimeter. At elevated temperatures the polymer and mesogen may become miscible, while upon cooling thermally induced phase separation (TIPS) should occur, preferably above the isotropic–nematic transition temperature. The nematic phase existed within disperse phase droplets that were stabilized and supported by the matrix polymer. The temperature range of the nematic phase was extended in the PDLC configuration. The droplet size was important for liquid crystalline optical behaviour. Polymer–mesogen interactions, identified through solubility parameters, were important in ensuring sufficient but not coarse phase separation.  相似文献   

2.
Fundamental control of the polymerization behaviour of polymer-dispersed liquid crystals (PDLCs) is critical to the formation of high-performance devices by polymer-induced phase separation (PIPS). Previous PDLC research has shown that monomer functionality and additives such as surfactants or reactive diluents can impart significant changes to the electro-optical behaviour of a system, especially in acrylate-based materials. The influence of monomer functionality and additives on the polymerization kinetics and LC phase separation were examined in the formation of acrylate-based PDLCs. Real-time infrared (RTIR) spectroscopy was utilized to simultaneously monitor polymerization rate, double bond conversion and LC phase separation. In the formation of PDLCs by PIPS, increasing acrylate monomer functionality reduces the polymerization rate, overall double bond conversion and the extent of LC phase separation. Interestingly, the additives octanoic acid and N-vinylpyrrolidone (NVP) increase the polymerization rate but suppress LC phase separation. During PDLC formation, both octanoic acid and NVP enhance the solubility of the LC in the growing polymer matrix, reducing the rate of liquid-gel demixing and decreasing nematic fraction in PDLCs. As a non-reactive component, octanoic acid increases the polymerization rate by plasticizing the crosslinked polymerization. NVP, a reactive diluent added to decrease viscosity, increases polymerization rate through favourable copolymerization with acrylate monomer.  相似文献   

3.
《Liquid crystals》2000,27(9):1183-1187
The induction of liquid crystal orientation through mechanical stretching was investigated for polymer dispersed liquid crystals (PDLCs) by means of infrared dichroism. Using a nematic liquid crystal BL006 and polyacrylic acid as the polymer matrix, it was possible to stretch the PDLC films with BL006 in either the isotropic or the nematic phase. After cooling the films under strain to room temperature, the molecular orientation of BL006 was found to be much higher for films that contained isotropic liquid droplets of BL006 at the time of stretching than for films that had nematic droplets. Stretching PDLC films with isotropic droplets results in no molecular orientation, but the orientation is induced during the subsequent cooling when BL006 goes through the isotropic-to-nematic phase transition. Interestingly for PAA/BL006, the nematic director orients along the long axes of the elongated droplets despite liquid crystal anchoring perpendicular to the polymer interface.  相似文献   

4.
The induction of liquid crystal orientation through mechanical stretching was investigated for polymer dispersed liquid crystals (PDLCs) by means of infrared dichroism. Using a nematic liquid crystal BL006 and polyacrylic acid as the polymer matrix, it was possible to stretch the PDLC films with BL006 in either the isotropic or the nematic phase. After cooling the films under strain to room temperature, the molecular orientation of BL006 was found to be much higher for films that contained isotropic liquid droplets of BL006 at the time of stretching than for films that had nematic droplets. Stretching PDLC films with isotropic droplets results in no molecular orientation, but the orientation is induced during the subsequent cooling when BL006 goes through the isotropic-to-nematic phase transition. Interestingly for PAA/BL006, the nematic director orients along the long axes of the elongated droplets despite liquid crystal anchoring perpendicular to the polymer interface.  相似文献   

5.
We report on the morphological and thermal properties of polymer‐dispersed liquid crystals (PDLCs) fabricated with frontal‐polymerization‐induced phase separation (FPIPS). Frontal polymerization is characterized by a rapid‐conversion, high‐temperature, and large‐thermal‐gradient environment. A comparison is made between the morphological and thermal properties of PDLCs fabricated with FPIPS and traditional thermal‐polymerization‐induced phase separation. Characterization includes differential scanning calorimetry to probe the glass and nematic‐to‐isotropic transitions and scanning electron microscopy to evaluate the phase‐separated morphology. In addition, the frontal temperatures and velocities are reported for PDLCs fabricated with frontal polymerization. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 204–212, 2003  相似文献   

6.
Polymer dispersed liquid crystals (PDLCs) using nematic liquid crystal and photo-curable polymer (NOA 65) were prepared by polymerisation-induced phase separation technique, in equal ratio (1:1) of polymer and liquid crystal (LC). We demonstrate that doping of small amount (0.125%, wt./wt.) of multiwall carbon nanotubes (CNTs) and orange azo dichroic dye in PDLC generously controlled the molecular orientation, dynamics of LC in droplet and size of droplets. The effects of multiwall CNTs and dye on PDLCs were studied in terms of transition temperature, droplet morphology, transmittance characteristic, contrast ratio and response time. The results exhibited that the values of the threshold electric fields were reduced from 8 V/µm (pure PDLC) to 1.18 and 1.72 V/µm, doped with multiwall CNTs and dye, respectively. The CNTs-doped PDLC shows faster switching response as compared with pure PDLC and dye-doped PDLC. However, dye-doped PDLC shows much higher contrast among all PDLC samples. Further, the results also illustrate that the birefringence value of LC in PDLCs was changed with doping of CNTs and dye.  相似文献   

7.
Polymer Dispersed Liquid Crystals (PDLCs) are liquid crystal dispersions in a polymer matrix, which look like opaque in their OFF state, when no electric field is applied, and transparent in their ON state. They are generally obtained by a phase separation process, such as Thermal, Solvent- and Polymerization-Induced Phase Separation (TIPS, SIPS and PIPS, respectively), between two transparent conductive glass substrates. In this paper, a new electro-optical device, formed by a porous polymer membrane imbibed with liquid crystal by capillary suction, is presented (Polymer Membranes Dispersed Liquid Crystals, PMDLC). Polymer membrane surfaces were made conductive before liquid crystal loading by magnetron sputtering of a thin layer of conductive indium tin oxide. The morphology and the electro-optical response of these devices were investigated and the observed transmittances and relaxation times were found to be similar to those of conventional PDLCs. In addition, PMDLCs showed interesting flexibility as no solid conductive substrate is required and economic convenience as there is no loss of liquid crystal in the polymer matrix.  相似文献   

8.
Among the different methods used to prepare polymer dispersed liquid crystals (PDLCs), polymerization induced phase separation can be successfully exploited to obtain optical recording of high resolution holographic gratings and binary images in these materials. In this paper we report a new method that allows hidden images to be obtained in PDLCs that are not detectable by light in the visible range. The possibility of storing invisible images during the curing process will be described and discussed. The binary images obtained can be detected by illuminating them with low power UV radiation, thus opening the way to interesting applications in the field of optical storage of reserved information.  相似文献   

9.
Polymer-dispersed liquid crystal (PDLC) films were prepared from thermal polymerisation-induced phase separation in heat-curable monomers/nematic liquid crystal (LC) mixtures. For PDLCs with a certain amount of LCs, the microstructure and the refractive index of polymer networks could be influenced by the relative content of epoxy monomers, owing to their different chemical structures. The effect of these factors on the electro-optic properties of films was also investigated.  相似文献   

10.
Among the different methods used to prepare polymer dispersed liquid crystals (PDLCs), polymerization induced phase separation can be successfully exploited to obtain optical recording of high resolution holographic gratings and binary images in these materials. In this paper we report a new method that allows hidden images to be obtained in PDLCs that are not detectable by light in the visible range. The possibility of storing invisible images during the curing process will be described and discussed. The binary images obtained can be detected by illuminating them with low power UV radiation, thus opening the way to interesting applications in the field of optical storage of reserved information.  相似文献   

11.
《Liquid crystals》2001,28(11):1655-1658
Bulk samples of polymer dispersed liquid crystals (PDLCs) containing polystyrene (PS) and a thermoelastic elastomer as polymer matrices, have been prepared by a thermally-induced phase separation method. Thermomechanical analysis measurements revealed that the PDLC containing the thermoplastic elastomer possessed rubber-like elasticity even in the mesomorphic temperature range of the LC while the PDLC based on PS showed plastic deformation during the measurement.  相似文献   

12.
以丙烯酸-2-乙基己酯(EHA)、二甲基丙烯酸乙二酯(EDMA)/季戊四醇四丙烯酸酯(PETTA)为混合单体、液晶P0616A为液晶相、Irgacure 184为光引发剂,通过UV光引发制备了聚合物分散液晶(PDLCs),研究了不同烷基链长醇,即乙醇(EtOH)、正丁醇(nBA)、正己醇(nHA)、正辛醇(nOA)和正十四醇(nTA)对体系光聚合动力学及其PDLCs液晶相变温度及电光特性的影响.结果表明引入醇分子显著加快了丙烯酸酯/液晶复合体系的光聚合反应速率,提高了单体的最终转化率,其中以正丁醇体系最为明显.随着醇分子烷基链的增长,体系的转化率趋于降低,但依然明显高于不含醇的体系.醇分子的加入降低了PDLCs中液晶相的TNI,且随着醇分子烷基链长的增长,PDLCs液晶相的TNI总体上呈降低的趋势.醇分子的加入增加了PDLCs液晶微区中向列相液晶的含量,而含正丁醇和正十四醇的体系液晶微区中向列相液晶低于其它3个含醇体系.醇分子的加入明显降低了PDLCs的阈值电压和饱和电压以及对比度.结合体系的光聚合速率和单体转化率,正丁醇是改善PDLCs性能的最佳选择.  相似文献   

13.
Bulk samples of polymer dispersed liquid crystals (PDLCs) containing polystyrene (PS) and a thermoelastic elastomer as polymer matrices, have been prepared by a thermally-induced phase separation method. Thermomechanical analysis measurements revealed that the PDLC containing the thermoplastic elastomer possessed rubber-like elasticity even in the mesomorphic temperature range of the LC while the PDLC based on PS showed plastic deformation during the measurement.  相似文献   

14.
Polymer films containing dispersions of liquid crystal microdroplets have considerable potential for use in displays and other light control devices. These polymer-dispersed liquid crystal (PDLC) films operate by electric field control of light scattering, rather than by polarization control as in the case of twisted nematic systems. The scattering characteristics of the PDLC films are determined by the refractive indices of the polymer and liquid crystal and by the size of the microdroplets. We have found that it is possible to regulate the microdroplet size by controlling the droplet formation rate (i.e. the cure kinetics of the film). Using calorimetry and scanning electron microscopy, we determined the influence of cure kinetics on microdroplet size for epoxy-based PDLCs. We found that droplet size increased with increasing cure time constant. However, the relationship changed as cure temperature was varied, perhaps as a result of competing cure processes. We also determined the phase behaviour of the epoxy-based PDLCs. The liquid crystal acted as a plasticizer, depressing the glass transition temperature of the PDLC samples slightly below that of the pure epoxy. The temperature and enthalpy of the nematic to isotropic transition of the liquid crystal material in the microdroplets were both functions of cure temperature. From the transition enthalpy it was possible to estimate a, the fraction of liquid crystal contained in the droplets; we found that a decreased with increasing cure temperature, presumably as a result of greater liquid crystal solubility in the epoxy matrix at higher temperatures.  相似文献   

15.
The thermotropic and optical characterisations of a novel polymer dispersed liquid crystal (PDLC) system based on polysulfone UDEL P-1700 as polymer matrix and a low molecular weight liquid crystal compound containing a mesogenic azomethine core and a cyano-substituent were investigated. The PDLC samples were prepared by solvent-induced phase separation (SIPS) and thermally induced phase separation (TIPS) methods using various compositions in the two components. Information on the morphology and phase structure was obtained by polarising optical microscopy, differential scanning calorimetry and X-ray diffraction measurements. PDLC systems with well-defined droplets were obtained for the composite with medium content of liquid crystal compound. The optical characterisation of these materials was performed by analysing their UV–visible absorption and photoluminescence emission as a function of the liquid crystal aggregation degree.  相似文献   

16.
Dispersing liquid crystal droplets in a rigid polymer matrix results in an electrically controllable light scattering medium. A polymer with high glass transition temperature phase-separated with a low molecular weight liquid-crystalline material is a good binder for polymer dispersed liquid crystals (PDLC). Main-chain liquid-crystalline epoxies were synthesized for the phase separation with low molecular weight nematic liquid crystals E7 (mixture of 4-alkyl-4′-cyanobiphenyls) and studied for their mesomorphic properties and response to an applied electrical field.  相似文献   

17.
In this study, macro-(RAFT) reversible additional fragmental chain transfer agent prepared by reversible additional fragmental chain transfer polymerisation has been incorporated into polymer dispersed liquid crystals (PDLCs). The effects of concentration, molecular weight and glass transition temperature of macro-RAFT agent were studied in terms of morphology, polymerisation kinetics, molecular weight of polymer matrix and electro-optical properties of the films. It was found that the key factor influencing morphology was the mobility of macro-RAFT agent chain rather than polymerisation rate and molecular weight of polymer matrix. Furthermore, the decrease in the mobility of macro-RAFT agent chain caused less liquid crystal nematic fraction, smaller liquid crystal domain size and greater driving voltage.  相似文献   

18.
《Liquid crystals》1997,23(6):861-867
Polymer dispersed liquid crystals (PDLCs) are materials composed of liquid crystal microdroplets dispersed in a polymer matrix. Their electro-optic properties make them useful for applications as large-area electrically switchable architectural windows (smart windows). For these applications, the key parameters of performance are the haze (both normal and offaxis) and the opacity. In the present work we show how it is possible to prepare a high performance smart window by controlling the haze and opacity of PDLC films using the polymer induced phase separation (PIPS) method.  相似文献   

19.
Polymer dispersed liquid crystals (PDLCs) have been extensively studied for various excellent electro-optical applications. The anchoring interaction of liquid crystals (LCs) molecules on the surface of the polymer cavity surrounding an LCs droplet has a crucial effect on the electro-optical performance of the PDLCs. The effect of polymerizable surfactants on the electro-optical properties of PDLCs films was studied in detail. The active double bonds were polymerized with prepolymer to stabilize the performance of polymer matrix. The experimental results showed that polymerizable surfactants could effectively reduce the driving voltage. The speed of polymerization was monitored by real-time transmittance. The electro-optical properties of PDLC films were measured by Polarimeter (PerkinElmer Model 341). The driving electric field was reduced from 3.9 V/μm to about 2.8 V/μm for doping undec-10-enoic acid at curing temperature 80?°C. The surfactants containing polymerizable functional groups, polarity, and alkyl chain weakened the surface anchoring between LCs droplets and polymer interface. The morphologies of PDLCs films were also investigated by polarizing optical microscopy (POM) and Fourier transform infrared (FTIR) images. The LC droplets were encapsulated by polymerizable surfactant according to FTIR images.  相似文献   

20.
Polymer dispersed liquid crystal (PDLC) films can be switched electrically from a light scattering off-state to a highly transparent on-state. Thin films were prepared via a polymerization-induced phase separation process using electron beam radiation. The liquid crystal (LC)/polymer materials were obtained from blends of a eutectic nematic mixture E7 and a polyester acrylate based polymer precursor. The optical and electrooptical properties of the obtained PDLC films strongly depend on the LC concentration. The LC solubility limit in the polymer matrix and the fractional amount of LC contained in the droplets were determined by calorimetric measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号