首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在流动注射-火焰原子吸收光谱法(FI-FAAS)测定铅(Ⅱ)的流路中设计了铅(Ⅱ)的磷酸盐沉淀在线富集的编结反应器,痕量铅(Ⅱ)与2.0×10-9mol·L-1磷酸二氢钾溶液在微酸性条件下在反应器中反应.当试样溶液的进样体积固定为8.00 mL,采用的富集流速为4.4 mL·min-1,富集时间为90 S,生成的铅(Ⅱ)的磷酸盐沉淀吸附于聚四氟乙烯反应管的内壁,毋需过滤,直接用2.0 mol·L-1硝酸流入管内使铅(Ⅱ)的沉淀溶解,溶液中铅(Ⅱ)按选定条件进行FAAS检测.按上述条件,可使增强系数(N)达到20,铅(Ⅱ)的检出限(3σ)达到23μg·L-1.对铅(Ⅱ)0.50 mg·L-1的标准溶液平行测定6次,算得测定结果的相对标准偏差为3.1%.用此方法分析了2件粉饼样品,测定值的相对标准偏差(n=6)分别为2.2%和4.1%.以此样品作基体进行回收试验,测得平均回收率为91%.  相似文献   

2.
应用氢化物发生-原子荧光光谱法测定了土壤及生物样品中铅和汞。样品用硝酸4mL及过氧化氢1mL按微波消解仪的工作参数进行消解,消解后溶液定容至25mL供测定。用30g·L-1柠檬酸溶液和硝酸(1+99)溶液的混合液作载流,根据铅(Ⅱ)离子的反应和试液对酸度的要求,选用含15g·L-1硼氢化钾,10g·L-1铁氰化钾和20g·L-1氢氧化钾的混合溶液作为还原剂。方法的检出限(3s/k)为0.512μg·L-1(铅)和0.067μg·L-1(汞)。应用此方法分析了3种实样并进行加标回收试验,测得回收率分别在91.0%~97.0%(铅)和88.0%~95.5%(汞)之间。  相似文献   

3.
以铋膜电极为工作电极,采用微分脉冲阳极溶出伏安法直接测定食品样品中痕量铅、镉和锌。在富集电位-1.4V,富集时间180s,铋膜质量浓度150μg·L-1的条件下,铋膜电极对铅、镉和锌的氧化溶出具有良好的电化学响应。铅(Ⅱ)、镉(Ⅱ)和锌(Ⅱ)的质量浓度在5.0~40μg·L-1的范围内与其阳极溶出峰电流呈线性关系,铅(Ⅱ)、镉(Ⅱ)和锌(Ⅱ)的检出限(3S/N)分别为0.80,0.65,0.58μg·L-1。对25μg·L-1铅(Ⅱ)、镉(Ⅱ)和锌(Ⅱ)溶液用铋膜电极连续测定15次,相对标准偏差分别为6.2%,5.1%,7.1%。方法应用于食品中痕量重金属的测定,测定结果与石墨炉原子吸收光谱法的测定值相符。  相似文献   

4.
报道了新型固化单宁树脂的合成方法及其对钯(Ⅱ)分离富集的研究.探讨了溶液pH值、温度、洗脱条件及干扰离子等对钯(Ⅱ)分离富集的影响.在pH=3,温度为25℃的条件下恒温水浴振荡20 min,痕量钯(Ⅱ)可被固化单宁树脂定量富集,其静态饱和吸附容量为44.91 mg·g-1.吸附的钯(Ⅱ)可用0.2 mol·L-1硫脲与0.2 mol·L-1盐酸混合液(体积比为1∶1)完全洗脱, 用火焰原子吸收光谱法(FAAS)测定.该法对钯(Ⅱ)的检出限(3σ,n=11)为0.091 μg·mL-1,相对标准偏差为2.69%(n=7),线性范围为0.16~8.2 μg·mL-1,加标回收率在97%~100%之间.方法用于催化剂中钯(Ⅱ)的测定,结果满意.  相似文献   

5.
乳液和水类美白化妆品经硝酸-过氧化氢混合液消解,粉类美白化妆品经硝酸-过氧化氢-氢氟酸混合液消解,用火焰原子吸收光谱法测定样品中铅和铜的含量。在优化的仪器工作条件下,铅和铜的质量浓度分别在9.0 mg·L-1和11.0 mg·L-1以内与其吸光度呈线性关系,检出限(3s)分别为21.8μg·L-1和16.2μg·L-1。方法用于美白化妆品中铅、铜的测定,测得回收率分别在98.0%~102.5%和96.7%~105.0%之间。  相似文献   

6.
在pH 5.6的六次甲基四胺(简称六胺)缓冲介质中,铅(Ⅱ)与二甲酚橙(XO)及溴化十六烷基三甲铵(CTMAB)形成三元配合物,其吸收峰在570~580nm之间。试验选择的显色反应条件:于25mL总体积中依次加入400g·L-1六胺溶液3.6mL,2.0g·L-1 XO溶液2mL和2.0g·L-1 CTMAB溶液2.5mL,加水定容放置10min,于波长570nm处测量吸光度。制作了铅(Ⅱ)的质量浓度在0.2~1.0mg·L-1范围内的标准曲线,线性关系良好。将上述方法用于测定水果中含铅量,水果样品(3.0g)用硝酸(5mL)和过氧化氢(2mL)进行微波消解,所得溶液蒸缩至约1~2mL,用水定容至50mL。分取5.00mL试液,按上述方法测定其中铅量。取5种水果样品进行分析,并同时用火焰原子吸收光谱法测定,所得结果表明两种方法的测定值之间无显著差异。  相似文献   

7.
应用流动注射技术,用D412螯合树脂微柱富集海水中的铅(Ⅱ),并与火焰原子吸收光谱法相结合测定海水中铅(Ⅱ)。20mL海水样品以3mL.min-1流量进柱,被树脂螯合吸附富集,以0.2mol.L-1乙酸铵溶液5mL淋洗柱体去除干扰物,以4mol.L-1硝酸溶液4mL为洗脱剂(流量为7mL.min-1),洗脱液直接引入火焰原子吸收光谱仪雾化器,在线检测。当海水样进样20mL时,铅(Ⅱ)测定灵敏度可提高约35倍;检出限(3s)为1.3μg.L-1。实际应用于海水样品分析,加标回收率为94.5%,测定值的相对标准偏差(n=6)为2.2%。  相似文献   

8.
以铅(Ⅱ)为印迹离子,以3-氨基丙基-三乙氧基硅烷为功能单体,用表面印迹技术在纳米TiO2/SiO2表面聚合形成铅(Ⅱ)印迹聚合物。试验结果表明:在静态吸附条件下,铅(Ⅱ)印迹聚合物对铅(Ⅱ)的吸附量为非印迹聚合物吸附量的3倍。控制富集的含铅(Ⅱ)样品溶液pH为4,体积最大为200mL,通过柱的流量为1.0mL·min-1。用电感耦合等离子体原子发射光谱法测定了洗脱液中的铅量。方法的检出限(3s)为0.09μg·L-1。以湖水样品为基体,用标准加入法做回收试验,测得回收率在95.6%~98.1%之间。应用所提出方法分析了2种国家一级标准物质,测得铅含量与认定值一致。  相似文献   

9.
在低温加热的条件下,油样用浓硝酸消化,所得试液中加入适量Triton X-100及Tween 80使乳化从而得到均匀的透明或半透明的呈橙黄色或黄绿色的试样溶液,供火焰原子吸收光谱法(FAAS)测定钙及锌.对非完全消化所用的酸和乳化剂的选择和FAAS测定中的化学干扰、背景干扰以及空白溶液及试样溶液粘度的一致性等分析务件进行了试验和优化.钙及锌两元素的线性范围依次为0~12 mg·L-1和0~1.6 mg·L-1,检出限(3σ/s)依次为0.14 mg·L-1及0.018 mg·L-1.此方法应用于润滑油实样分析,所得两元素分析结果的RSD(n=6)值均小于5%,回收率均在100.0%~102.1%之间.  相似文献   

10.
基于纳米活性白土的大比表面积和吸附特性,有效地解决了废水中锰(Ⅱ)的分离和预富集,对纳米活性白土的吸附性能作了较全面的研究。结果表明:在最佳试验条件下,当活性白土的用量为0.020 g时,其静态饱和吸附容量为6.13 mg.g-1;当在pH 4的含锰(Ⅱ)溶液中用0.500 g活性白土与之振摇5 min,随后令其静置6 h,锰的回收率达92%以上。吸附在纳米活性白土上的锰(Ⅱ)可用0.5 mol.L-1盐酸溶液25 mL与之振摇3 min并静置3 h使其解吸,解吸的回收率达95%以上。解吸溶液中的锰(Ⅱ)用火焰原子吸收光谱法测定,所提出的方法已用于磷化工艺的废水样中锰的测定,所得方法的检出限(3σ)、相对标准偏差(n=11)及回收率的数据依次为0.002 3 mg.L-1,1.0%及92.5%~99.0%范围内。  相似文献   

11.
提出了石墨炉原子吸收光谱法测定顺铂人血浆中铂浓度。采集人静脉血作样品,用浓硝酸及过氧化氢消解。冷却至4℃,使脂肪固化并过滤除去。收集滤液,蒸干,用200μL盐酸(1+99)溶液浸取残渣,所得溶液供石墨炉原子吸收光谱分析。方法的线性范围为0.02~1.00mg.L-1,检出限(3σ)为0.016mg·mL-1,回收率在94.6%~120.0%之间,相对标准偏差(n=5)小于7%。  相似文献   

12.
合欢皮样品用硝酸及过氧化氢消解,先在加热板上控温在105~110℃加热30 min,然后移至微波消解炉内,在650 W功率条件下消解4 min,所得清彻透明溶液定容为100 mL,用于火焰原子吸收光谱法测定溶液中微量的铁、锌、铜及锰.在所设定的仪器工作条件下,上述4金属离子的检出限(3S)依次为0.013,0.003,0.008,0.003 mg·L-1.应用此方法分析了合欢皮样品,测定结果的相对标准偏差(n=10)依次为0.4%,2.6%,2.2%,0.6%,另作回收试验,所得回收率在98.0%~102.%之间.  相似文献   

13.
以微波消解样品,在碱性铁氰化钾溶液中进行铅的氢化物发生反应.采用连续氢化物发生器,对电感耦合等离子体原子发射光谱法测定痕量铅的条件进行了研究,方法的检出限(3σ)为0.72μg·L-1,相对标准偏差(n=11)为1.22%,应用于动物源抗癌中药中痕量铅的测定,回收率在96.6%~100.1%之间.  相似文献   

14.
应用1-(2-吡啶偶氮)-2-萘酚(简写作PAN)-镍(Ⅱ)共沉淀体系,以锰(Ⅱ)为内标,在pH 9的氨性缓冲溶液中对食盐中痕量铅(Ⅱ)进行快速共沉淀富集,并用火焰原子吸收光谱法测定铅的含量,对共沉淀条件作了优选。在优化的条件下,试液中作为内标的锰(Ⅱ)及铅(Ⅲ)离子均定量地与PAN-Ni(Ⅱ)共沉淀析出。锰(Ⅱ)、铅(Ⅱ)及镍(Ⅱ)均匀地存在于沉淀中,而且在铅(Ⅱ)、锰(Ⅱ)之间或镍(Ⅱ)、锰(Ⅱ)之间存在着一定的比例关系。因此,根据共沉淀中铅(Pb1)及锰(Mn1)的吸光度APb1,AMn1的比值即可求得铅的含量(w%),原试样中铅含量(Pb0)可由下式计算:mPb0=APb1/AMn1.mMn0。试验结果表明,经过共沉淀分离,基体干扰已予消除。此方法的检出限为3.18×10-2mg.L-1。应用于3种不同来源的食盐的分析,算得铅含量测定值的RSD(n=6)均小于4.3%,回收率测得值在95.4%至101.6%之间。  相似文献   

15.
聚乳酸样用硝酸-硫酸消解后,石墨炉原子吸收光谱法测定聚乳酸样品中锡的残留量.用抗坏血酸作基体改进剂,方法检出限0.23 mg·L-1,工作曲线的线性范围为1~10 mg·L-1,相关系数为0.996 8,方法的平均回收率为97.1%,日内相对标准偏差为6.9%.方法满足中国药典2005年版的要求,可用于测定辅料聚乳酸中残留锡.  相似文献   

16.
塑料制品中铅、汞、镉、铬(Ⅵ)测定   总被引:2,自引:0,他引:2  
塑料样品用硝酸、盐酸、高氯酸及过氧化氢(含硅样品尚须加入氢氟酸)加压消解,可按程序用微波加热或置于不锈钢压力罐中,密闭后在控温于190℃的烘箱中加热.所得试样溶液供电感耦合等离子体原子发射光谱法测定铅、汞及镉,要求及限量的盐酸抵消氯离子的影响,测定了标准物质中铅、汞、镉的含量,测得结果与证书值一致,铅、汞、镉测定值的相对标准偏差(n=9)在0.3%~8.0%之间.另取样品用二苯基羰酰二肼(DPC)光度法测定其铬(Ⅵ)含量,样品中铬(Ⅵ)用氢氧化钠-碳酸钠混合溶液和磷酸二氢钾-磷酸氢二钾缓冲溶液超声提取60 min,分取部分过滤提取液,按DPC光度法测定铬(Ⅵ)量.测得铬(Ⅵ)的平均回收率为95%,平均相对标准偏差(n=9)为0.35%.铅、汞、镉及铬(Ⅵ)的检出限(3σ)依次为0.011,0.007,0.003,0.001 mg·L-1.  相似文献   

17.
电感耦合等离子体原子发射光谱法(ICP-AES)应用于某些特殊试样(特别试液背景色泽很深或略带混浊者)中铬(Ⅵ)的测定.试样溶液中共存的铬(Ⅲ)及一些其他金属离子的干扰,借在PH 9.5的氨性溶液中以Fe(Ⅲ)离子作载体共沉淀分离予以消除,用ICP-AES法测定滤液中铬(Ⅳ).试验表明:铬(Ⅲ)共存量达100 mg·L-1时,经沉淀分离后不影响铬(Ⅵ)的测定,铬(Ⅵ)的回收率接近100%.此方法的检出限(3σ)为0.054 mg·L-1,应用所提出的方法测定了一种黄色油漆中在铬(Ⅲ)共存下的铬(Ⅵ),平行7次测定,相对标准偏差为1.3%.  相似文献   

18.
提出了原子吸收光谱法间接测定食品中甲醛含量的方法。甲醛与斐林溶液(含铜离子和酒石酸钾钠的碱性溶液)在沸水浴中反应30min生成氧化亚铜沉淀,或与银氨溶液(含银离子的氨性溶液)在50℃水浴中反应15min生成单质银沉淀。两种沉淀分别用6mol·L-1盐酸溶液和6mol·L-1硝酸溶液溶解,并用原子吸收光谱法测定反应中定量释出的铜量或银量,间接换算成甲醛含量。铜和银的质量浓度分别在7.000,6.000mg·L-1以内与吸光度呈线性关系。在试样溶液中加入1.000mg·L-1铜、银标准溶液并按所述方法进行分析,所得回收率在99.6%~101%之间(Cu)和81.9%~84.2%之间(Ag)。  相似文献   

19.
石墨炉原子吸收光谱法测定尿样中铅   总被引:1,自引:0,他引:1  
石墨炉原子吸收光谱法测定尿铅以钯溶液与抗坏血酸溶液作为混合基体改进剂,使灰化温度达到1000℃以上,降低了尿中复杂成分的干扰.方法的检出限为0.20μg·L-1,对正常人混合尿中铅测定结果的相对标准偏差为2.54%~4.86%,加标回收率为92.6%~112.6%.  相似文献   

20.
火焰原子吸收光谱法及比浊法测定聚氯乙烯中氯   总被引:1,自引:0,他引:1  
以无水碳酸钠为灰化固定剂,于瓷坩埚中加热将试样灰化,于高温炉中在700℃燃烧2 h,用水溶出残渣,分取部分试液用火焰原子吸收光谱法(FAAS)或浊度法测定其中氯离子.加入过量银以沉淀样品溶液中的氯离子,用FAAS法测定银以间接测定氯,或通过测定氯化银悬浮体的表观吸光度而测定氯,建立了FAAS法及比浊法测定聚氯乙烯中氯含量的方法.线性范围:FAAS法为0~140μmol·L-1,比浊法为0.4~4.8 mg·L-1.测定结果的相对标准偏差≤1.9%,加标回收率95.0%~102.5%.两种方法测定结果的相对误差小于士1.1%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号