首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The excitation of half leaky guided optical modes to characterize fully the optical tensor profile in a thin liquid crystal layer has been used to evaluate the effect of rubbed polyimide aligning layers on the alignment of a nematic liquid crystal. A cell fabricated with rubbed polyimide alignment surfaces was studied at a wavelength of 632.8 nm. The liquid crystalline layer is sandwiched between a high refractive index top glass plate and a low refractive index glass substrate. Angular dependent reflectivities are recorded using a coupling prism and matching fluid with the same index as the top glass plate. Careful fitting of the predictions from multilayer optics theory to the observed angle dependent polarization conversion and reflectivity data yields the director profile within the liquid crystal layer in great detail.  相似文献   

2.
Abstract

The excitation of optical modes is used to study the optical tensor configuration in a thin ferroelectric liquid crystal layer, cooled from the initially homeotropically aligned nematic phase. By monitoring the angular dependent reflectivity for plane polarized radiation coupled into the guided modes in the smectic C* layer and subsequently fitting the recorded data to predictions from multilayer optics theory, the optical tensor configuration in the layer is fully evaluated. Iteratively modelling the full tilt/twist profile in the cell, progressively converging the predicted reflectivity to experimental data, gives a complete and very well specified picture of the optical tensor throughout the cell. By studying the cell at various temperatures, the temperature dependence of the tilt of the major axis of the optic tensor (which may be related to the cone angle if the smectic layers are parallel to the cell surface) has been established. The temperature dependent optical dielectric constants have also been obtained.  相似文献   

3.
The excitation of optical modes is used to study the optical tensor configuration in a thin ferroelectric liquid crystal layer, cooled from the initially homeotropically aligned nematic phase. By monitoring the angular dependent reflectivity for plane polarized radiation coupled into the guided modes in the smectic C* layer and subsequently fitting the recorded data to predictions from multilayer optics theory, the optical tensor configuration in the layer is fully evaluated. Iteratively modelling the full tilt/twist profile in the cell, progressively converging the predicted reflectivity to experimental data, gives a complete and very well specified picture of the optical tensor throughout the cell. By studying the cell at various temperatures, the temperature dependence of the tilt of the major axis of the optic tensor (which may be related to the cone angle if the smectic layers are parallel to the cell surface) has been established. The temperature dependent optical dielectric constants have also been obtained.  相似文献   

4.
Prism coupling techniques have been used to excite optical modes in a thin nematic liquid crystal with finite surface tilt in order to study the voltage dependent director profile. The surface tilts are opposite in character and it is found that at zero applied volts the stable configuration is the substantially horizontal state. On applying the field this state is broken, probably transforming to the twisted vertical state. By modelling all the data obtained, the detailed behaviour of the director profile has been fully characterized yielding much information, including the change of surface tilt with applied voltage. For the nematic liquid crystal E7, this gives a voltage induced surface tilt of approximately 0.67° V-1 for a 5.65 μm thick cell. Also using a boundary layer model, it has been possible to analyse the free energy in the cell and hence show that the observed twisted vertical state is the expected stable state under the field applied.  相似文献   

5.
Using prism coupling to guided modes and surface plasmons we have examined in detail the director response of a 90° twisted nematic liquid crystal cell as a function of applied voltage. By careful comparison of angle scan reflectivity data with theoretical predictions generated from a combination of liquid crystal continuum theory and multilayer optics theory it has been possible to establish how the surface tilt changes with voltage, and also to observe changes in the optic constants due to changes in the order parameter with applied field.  相似文献   

6.
The optic tensor configuration in a surface stabilized ferroelectric liquid crystal cell is investigated using optical excitation of half leaky guided modes. A thin ferroelectric liquid crystal layer is confined between a high index pyramid, with an index greater than the maximum of the liquid crystal, and a glass substrate having an index less than the minimum of the liquid crystal. Using standard attenuated total reflection experimental procedures, over a small angle range a series of sharp resonant peaks are recorded in the s-polarized reflectivity using p-polarized incident light. These peaks are extraordinarily sensitive to details of the optical tensor configuration within the cell. Fitting theoretically modelled reflectivities from multilayer Fresnel theory to the data allows determination of near surface alignment, bending of the chevron, surface tilt angle and biaxiality. To give a clear physical explanation for the great sensitivity of the technique, the electromagnetic field component distributions in the cell are also presented and analysed. The results confirm that the half leaky guided mode method has enormous potential for the study of the optic tensor configuration in liquid crystal layers.  相似文献   

7.
The joint influence of optical and (quasi-)static electric fields on the orientation of liquid crystal gives rise to peculiar effects. In this article we report on the generation of transient domains in liquid crystals, which are an order of magnitude larger than the size of the optical field profile. The formation of such a domain is due to the fact that the initially present optical field reverses the pre-tilt, and the voltage that is then applied gives rise to an amplification of the tilt angle. The resulting reorientation of the director strongly depends on the starting conditions of the preliminary present optical field. We demonstrate different switching conditions, depending on the relation between the incident angle of the beam and the pre-tilt angle. The resulting refractive index profiles give rise to lensing effects.  相似文献   

8.
We investigated theoretically the dynamics of in-plane switching (IPS) cells with small pretilt angle and found that the liquid crystal director variation causes optical bounce after switching on an applied voltage. We analysed the behaviour of the director by computer simulation and found that the optical bounce occurs during the rising period with the normal twist and tilt angles of the directors in the IPS cell in the absence of the field-induced backflow effect. Pretilt angle is the source of this optical bounce.  相似文献   

9.
We investigated theoretically the dynamics of in-plane switching (IPS) cells with small pretilt angle and found that the liquid crystal director variation causes optical bounce after switching on an applied voltage. We analysed the behaviour of the director by computer simulation and found that the optical bounce occurs during the rising period with the normal twist and tilt angles of the directors in the IPS cell in the absence of the field-induced backflow effect. Pretilt angle is the source of this optical bounce.  相似文献   

10.
Electro-optic properties of polymer stabilized ferroelectric liquid crystal (PSFLC) systems are examined as a function of varying concentrations of either a linear or crosslinked thiol-ene polymer. The thiol-ene method of polymer stabilization is a drastic change from previous studies designed to avert the problem of polymer phase separation. FLC rise time and tilt angle measurements were used to determine the effects of the polymer network on the optical properties of the system. The addition of monomer impurities to both systems demonstrated a reduction in tilt angle, which translated into decreased switching speeds in both systems prior to polymerization. The crosslinked thiol-ene system showed increased switching times due to the creation of polymer in the interlayer spacing of the FLC, but exhibited minimal increase in the rotational viscosity of the system. In addition, the crosslinked polymer systems resulted in an increase in the liquid crystalline order, which produced an increase in the contrast ratio of the system. The linear polymer system showed drastically different results as compared with the crosslinked system. The rise time and tilt angle measurements decreased upon polymerization of the linear thiol-ene and the rotational viscosity and contrast ratio values also decreased. We suggest that the linear thiol-ene polymer phase separation from the interlayer spacing leads to a microscopic misalignment of the FLC molecules, causing a decrease in the optical properties of the LC.  相似文献   

11.
Electro-optic properties of polymer stabilized ferroelectric liquid crystal (PSFLC) systems are examined as a function of varying concentrations of either a linear or crosslinked thiol-ene polymer. The thiol-ene method of polymer stabilization is a drastic change from previous studies designed to avert the problem of polymer phase separation. FLC rise time and tilt angle measurements were used to determine the effects of the polymer network on the optical properties of the system. The addition of monomer impurities to both systems demonstrated a reduction in tilt angle, which translated into decreased switching speeds in both systems prior to polymerization. The crosslinked thiol-ene system showed increased switching times due to the creation of polymer in the interlayer spacing of the FLC, but exhibited minimal increase in the rotational viscosity of the system. In addition, the crosslinked polymer systems resulted in an increase in the liquid crystalline order, which produced an increase in the contrast ratio of the system. The linear polymer system showed drastically different results as compared with the crosslinked system. The rise time and tilt angle measurements decreased upon polymerization of the linear thiol-ene and the rotational viscosity and contrast ratio values also decreased. We suggest that the linear thiol-ene polymer phase separation from the interlayer spacing leads to a microscopic misalignment of the FLC molecules, causing a decrease in the optical properties of the LC.  相似文献   

12.
13.
An external electric field applied across a planar-aligned cell in Smectic A* phase of de Vries smectic liquid crystal induces director redistribution over a cone, resulting in a substantial increase in the birefringence and the apparent optical tilt angle. Such an electro-optic response is modelled by Shen et al. [Y. Shen et al., Phys. Rev. E 88, 062504 (2013)], who modified their previous hollow cone with a diffuse cone model by introducing the molecular distribution function limited over a range of tilt angles, that lie in between θmin and θmax. The limits in these two tilt angles are assumed to be temperature independent though the tilt angle in between the two values can be temperature dependent. However, the high resolution measurements of birefringence and the layer thickness indicate the presence of temperature dependent diffuse cone angle in SmA* phase.. In the proposed model, we replace θmin by θT, a temperature dependent fitting parameter and the change shows that a better fit of the experimental data to the model is obtained. We determine the temperature dependence of θmin and show that this angle increases as SmA* to SmC* phase transition temperature is approached.  相似文献   

14.
A half-V-shaped switching ferroelectric liquid crystal (FLC) is a promising candidate for fast response displays. In the half-V FLC display, a liquid crystal with a chiral nematic-chiral smectic C phase transition is used, and the smectic layer is formed by cooling from N* to SmC* with an applied d.c. field. We studied the layer structure by means of X-ray measurements for two axes (ω and χ). By using a point-focused X-ray tube and optimizing the slit width, we succeeded in the two-axis measurement with a commercial X-ray system. The ω-χ profile of the half-V FLC showed two broad peaks in an arc-shaped high-intensity area. Our interpretation of this result is that the major part of the layer consists of a tilted-bookshelf structure and that the minor part consists of a near-bookshelf structure. Since optical microscopy observations on the half-V FLC cells showed a stripe-shaped texture, we consider that the coexistence of the tilted-bookshelf and the near-bookshelf structures forms the stripe-shaped patterns. The radius of the arc-shaped high-intensity area was nearly equal to the molecular tilt angle. This result can explain why the half-V FLC showed a desirable black appearance in spite of the stripe-shaped texture.  相似文献   

15.
《Liquid crystals》1998,25(4):495-504
The genetic algorithm (GA), written to allow automatic analysis of optical reflectivity data obtained from liquid crystal cells using the half-leaky guided mode technique, has been developed to the point where liquid crystal cells can be analysed successfully giving greater detail of optical parameters and director profile than yielded by any other technique. The technique models the liquid crystal layer as a set of discrete, independent sub-layers which can map out the variation of the director through the thickness of the cell. Given sufficient high quality data, it is now possible automatically and accurately to fit the parameters of a complete liquid crystal cell. Using this highly adapted GA, half-leaky guided mode optical reflectivity data from the nematic, smectic A and smectic C* phases of SCE13 in a surface stabilized ferroelectric liquid crystal have been fitted to reveal director profiles and optical parameters of the cell in each phase.  相似文献   

16.
A model for the near surface director profile in a homeotropically aligned smectic liquid crystal is developed based on the idea of the two independent anchoring energies separately associated with the director and the density wave at the surface. These anchoring energies are counterbalanced by the tendency to form the smectic C phase in the bulk. The model yields simple distance-dependent cone angle profiles which are compared with experimental data obtained from the half-leaky waveguide technique to obtain the coherence length for the penetration of the smectic C phase into the smectic A phase and the ratio of the surface to bulk cone angles.  相似文献   

17.
We report on fast-switching and high-efficient optical beam steering based on a polymerisable liquid crystal polarisation grating (PG) in combination with ferroelectric liquid crystal (FLC) phase shutter. The PG was fabricated in a convenient single-step holographic exposure process using photo-sensitive azo-dye material as alignment layer for liquid crystal (LC) director. A binary electro-optical FLC was employed for circular polarisation selection, which enables the electro-tunable steering of the combined system. The efficiency of 95.7% with 82 μs switching time is obtained for 1064 nm laser. This work provides a versatile candidate for non-mechanical beam steering devices.  相似文献   

18.
Cadmium selenide quantum dot (CdSe QD) has been used as a dopant in ferroelectric liquid crystal (FLC) 2-methylbutyl 4-(4-decyloxybenzylideneamino) cinnamate (DOBAMBC). Effect of CdSe QD in DOBAMBC on its different electro-optical (E-O) properties has been studied in the SmC* phase. The optical micrographs recorded for the pure and composite material are showing good dispersion of QDs in the FLC matrix. Micrographs of unaligned sample cell revealed that CdSe QDs induce homeotropic alignment of FLC molecules. An appreciable change in the value of E-O parameters like tilt angle, spontaneous polarisation and response time with shifting of SmA–SmC* phase transition temperature has been observed for CdSe QD–DOBAMBC composite. The observed properties of composite system have been discussed on the basis of surface properties of QDs in FLC system.  相似文献   

19.
A half-V-shaped switching ferroelectric liquid crystal (FLC) is a promising candidate for fast response displays. In the half-V FLC display, a liquid crystal with a chiral nematic–chiral smectic C phase transition is used, and the smectic layer is formed by cooling from N* to SmC* with an applied d.c. field. We studied the layer structure by means of X-ray measurements for two axes (ω and χ). By using a point-focused X-ray tube and optimizing the slit width, we succeeded in the two-axis measurement with a commercial X-ray system. The ωχ profile of the half-V FLC showed two broad peaks in an arc-shaped high-intensity area. Our interpretation of this result is that the major part of the layer consists of a tilted-bookshelf structure and that the minor part consists of a near-bookshelf structure. Since optical microscopy observations on the half-V FLC cells showed a stripe-shaped texture, we consider that the coexistence of the tilted-bookshelf and the near-bookshelf structures forms the stripe-shaped patterns. The radius of the arc-shaped high-intensity area was nearly equal to the molecular tilt angle. This result can explain why the half-V FLC showed a desirable black appearance in spite of the stripe-shaped texture.  相似文献   

20.
Abstract

A homogeneously aligned nematic liquid crystal cell with a hole-patterned electrode and with an indium-tin oxide (ITO-) coated counter-electrode has been prepared. A non-uniform electric field can be produced by the asymmetrical electrode structure. The liquid crystal director can be reoriented by applying a voltage across the electrodes, and this produces an axially symmetrical profile of the refractive index. This liquid crystal cell is expected to have a lens effect and so its optical properties have been investigated. The profile of the output light intensity was measured by using a detecting system with an optical fibre. Some relationships between the lens properties, the diameter of the hole and the thickness of the liquid crystal layer have been examined. The liquid crystal cell becomes a convex (converging) lens with a relatively low voltage. A focal length of several millimetres can be obtained by applying voltages of 3-4 V. As the applied voltage increases, the focal length becomes longer, and the cell changes to a concave (diverging) lens when a high voltage is applied (? 20 V). These properties are discussed from the viewpoint of the director orientation effects resulting from the non-uniform electric fields in the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号