首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Loop-mediated isothermal amplification in conjunction with enzyme-linked immunosorbent assay (LAMP-ELISA) provides a sensitive, specific and cost-effective method for detection of etiological causes of infections. The present study developed a reliable LAMP-ELISA diagnostic kit for identification of Salmonella serogroup D strains and evaluated its potential use in the detection of Salmonella serovars Enteritidis and Typhi. The LAMP-ELISA assay used a serogroup D/A-specific primer set to amplify a region of the prt gene, followed by hybridization of the digoxigenin-labeled products to a highly specific oligonucleotide probe for exact identification of serogroup D serovars. Among the bacteria tested, a positive reaction was only observed for strains belong to Salmonella serogroup D. The detection limit of the LAMP-ELISA assay was 4 CFU per tube, which was lower than PCR-ELISA assay with the same target gene (50 CFU per tube). Finally, the technique was successfully applied to an artificially contaminated meat sample with a detection limit 103 CFU mL−1, which was 10 times more sensitive than PCR-ELISA. Overall, the LAMP-ELISA assay could be used as a sensitive alternative method to PCR-ELISA for the specific detection of Salmonella serogroup D serovars in routine food microbiology or clinical laboratories worldwide.  相似文献   

2.
A sensitive luminescent bioassay for the simultaneous detection of Salmonella Typhimurium and Staphylococcus aureus was developed using aptamer-conjugated magnetic nanoparticles (MNPs) for both recognition and concentration elements and using upconversion nanoparticles (UCNPs) as highly sensitive dual-color labels. The bioassay system was fabricated by immobilizing aptamer 1 and aptamer 2 onto the surface of MNPs, which were employed to capture and concentrate S. Typhimurium and S. aureus. NaY0.78F4:Yb0.2,Tm0.02 UCNPs modified aptamer 1 and NaY0.28F4:Yb0.70,Er0.02 UCNPs modified aptamer 2 further were bond onto the captured bacteria surface to form sandwich-type complexes. Under optimal conditions, the correlation between the concentration of S. Typhimurium and the luminescent signal was found to be linear within the range of 101–105 cfu mL−1 (R2 = 0.9964), and the signal was in the range of 101–105 cfu mL−1 (R2 = 0.9936) for S. aureus. The limits of detection of the developed method were found to be 5 and 8 cfu mL−1 for S. Typhimurium and S. aureus, respectively. The ability of the bioassay to detect S. Typhimurium and S. aureus in real water samples was also investigated, and the results were compared to the experimental results from the plate-counting methods. Improved by the magnetic separation and concentration effect of MNPs, the high sensitivity of UCNPs, and the different emission lines of Yb/Er- and Yb/Tm-doped NaYF4 UCNPs excited by a 980 nm laser, the present method performs with both high sensitivity and selectivity for the two different types of bacteria.  相似文献   

3.
Fabrication of a novel capacitive immunosensor based on grafted ethylene diamine and self-assembled gold nanoparticle monolayer on glassy carbon electrode for the detection of Salmonella spp. is described for the first time. In the present study, the Salmonella spp. monoclonal antibodies (denoted as McAbs) was immobilized on gold nanoparticles. Interaction of McAbs and Salmonella spp. was detected directly using the electrochemical impedance spectroscopy (EIS) technique. The experimental results showed that the concentration of antigen was measured through the relative change in capacitance in the corresponding specific binding of Salmonella spp. and McAbs. Under the optimized conditions, the relative changes in capacitance were proportional to the logarithmic values of Salmonella spp. concentrations in the range of 1.0 × 102 to 1.0 × 105 CFU mL−1 (r = 0.991) with the detection limit of 1.0 × 102 CFU mL−1. The stability of proposed immunosensor could be estimated by determining the relative change in capacitance, which remained almost the same in two months and decreased gradually to 85.3% of initial value after four months’ storage. The used immunosensor could be regenerated repeatedly by immersing in glycine-HCl buffer solution (pH 2.8). Finally, the proposed immunosensor was successfully used for the detection of Salmonella spp. in lab-processed commercial pork samples.  相似文献   

4.
A novel nonenzymatic optical immunoassay strategy was for the first time designed and utilized for sensitive detection of antibody to Salmonella pullorum and Salmonella gallinarum (S. pullorum and S. gallinarum) in serum. The optical immunoassay strategy was based on blue silica nanoparticles (Blue-SiNps) and magnetic beads (MB). To construct such an optical immunoassay system, the Blue-SiNPs were first synthesized by inverse microemulsion method, characterized by SEM, Zeta potential and FTIR. Two nanostructures including Blue-SiNPs and MB were both functionalized with antibody against S. pullorum and S. gallinarum (anti-PG) without using enzyme labeled antibody. Anti-PG functionalized blue silica nanoparticles (IgG-Blue-SiNps) were used as signal transduction labels, while anti-PG functionalized magnetic beads (IgG-MB) were selected to separate and enrich the final sandwich immune complexes. In the process of detecting negative serum, a sandwich immunocomplex is formed between the IgG-MB and IgG-Blue-SiNPs. With the separation of the immunocomplex using an external magnetic field, the final plaque displayed bright blue color. While in the detection of infected serum, IgG-MB and anti-PG formed sandwich immunocomplexes, IgG-Blue-SiNPs were unable to bind to the limited sites of the antigen, and a light brown plaque was displayed in the bottom of microplate well. Stable results were obtained with an incubation time of 60 min at room temperature, and different colors corresponding to different results can be directly detected with naked eye. The reaction of IgG-Blue-SiNPs with S. pullorum was inhibited by 1:100 dilution of positive chicken serum. Such a simple immunoassay holds great potential as sensitive, selective and point-of-care (POC) tool for diagnosis of other biological molecules.  相似文献   

5.
A method based on amino-modified silica-coated magnetic nanoparticles (ASMNPs) and polymerase chain reaction (PCR) was developed to rapidly and sensitively detect foodborne pathogens in raw milk. After optimizing parameters such as pH, temperature, and time, a trace amount of genomic DNA of pathogens could be extracted directly from complex matrices such as raw milk using ASMNPs. The magnetically separated complexes of genomic DNA and ASMNPs were directly subjected to single PCR (S-PCR) or multiplex PCR (M-PCR) to detect single or multiple pathogens from raw milk samples. Salmonella Enteritidis (Gram-negative) and Listeria monocytogenes (Gram-positive) were used as model organisms to artificially contaminate raw milk samples. After magnetic separation and S-PCR, the detection sensitivities were 8 CFU mL−1 and 13 CFU mL−1 respectively for these two types of pathogens. Furthermore, this method was successfully used to detect multiple pathogens (S. Enteritidis and L. monocytogenes) from artificially contaminated raw milk using M-PCR at sensitivities of 15 CFU mL−1 and 25 CFU mL−1, respectively. This method has great potential to rapidly and sensitively detect pathogens in raw milk or other complex food matrices.  相似文献   

6.
We report the use of capillary gel electrophoresis (CGE) based on a rfbS allele-specific polymerase chain reaction (PCR) for the analysis and simultaneous detection of Salmonella pullorum and Salmonella gallinarum, which are the major bacterial pathogens in poultry. rfbS allele-specific PCR was used to concurrently amplify two specific 147- and 187-bp DNA fragments for the simultaneous detection of S. pullorum and S. gallinarum at an annealing temperature of 54 ± 1 °C and an MgCl2 concentration of 2.8-5.6 mM. Under an electric field of 333.3 V/cm and a sieving matrix of 1.0% poly(ethyleneoxide) (Mr 600 000), the amplified PCR products were analyzed within 6 min by CGE separation. This CGE assay could be translated to microchip format using programmed field strength gradients (PFSG). In the microchip gel electrophoresis with PFSG, both of the Salmonella analyses were completed within 30 s, without decreasing the resolution efficiency. rfbS allele-specific PCR-microchip gel electrophoresis with the PFSG technique might be a new tool for the simultaneous detection of both S. pullorum and S. gallinarum, due to its ultra-speed and high efficiency.  相似文献   

7.
By using the specific primer extension reaction, a new assay for genotyping of single-nucleotide polymorphisms (SNPs) has been demonstrated. The assay relies on the conformational and colorimetric change of water-soluble polythiophene derivative, poly[3-(3′-N,N,N-triethylamino-1′-propyloxy)-4-methyl-2,5-thiophene hydrochloride] (PMNT), upon forming interpolyelectrolyte complex with extended double strand DNA and non-extended single strand DNA. All three kinds of SNP genotypes can be colorimetrically identified with one primer extension reaction in homogeneous solution. Moreover, combining with the specific digestion of RNA strands in the RNA/DNA hybrids, the proposed assay can also be applied to SNP genotyping for RNA templates. The SNP genotyping assay does not require chemical modification of oligonucleotide probes and nucleic acid targets and any separation step. It would be useful for routinely SNP detection in ordinary laboratories.  相似文献   

8.
In order to foreknow poorly performing cultures before wasting energy to scale them to large cultures, industrial microbial fermentation can greatly benefit from knowledge of the physiological state of cells. The method currently proposed is an easily automated physiological state determination method. We have designed one universal rRNA-specific probe for bacteria and developed novel signal probe hybridization (SPH) assay featuring no RNA extraction and no PCR amplification steps necessary to quantify the physiological state of microbial cells. The microbial cell was lysed with sonication and SDS. Signal probes were applied to hybridize and protect the rRNA target. S1 nuclease was then applied to remove the excessive signal probes, the single-stranded RNA and the mismatch RNA/DNA hybrids. The remaining signal probe was captured with a corresponding capture probe immobilized on a microplate and quantified with a horseradish peroxidase-conjugated color reaction. We then systemically optimized our assay. Results showed that the cell limit of detection (LOD) and the cell limit of quantification (LOQ) were 2.64 × 104 cells and 9.86 × 104 cells per well of microplate, respectively. The limit of detection (LOD) and the limit of quantification (LOQ) of signal probe were 49.0 fM and 344.0 fM respectively. Using this technique, we quantified the 16S rRNA levels during the fermentation process of Pseudomonas sp. M18. Our results indicate that the 16S rRNA levels can directly inform us about the physiological state of microbial cells. This technique has great potential for application to the microbial fermentation industry.  相似文献   

9.
A novel electrochemical sensing strategy was developed for ultrasensitive and rapid detection of Salmonella by combining the rolling circle amplification with DNA–AuNPs probe. The target DNA could be specifically captured by probe 1 on the sensing interface. Then the circularization mixture was added to form a typical sandwich structure. In the presence of dNTPs and phi29 DNA polymerase, the RCA was initiated to produce micrometer-long single-strand DNA. Finally, the detection probe (DNA–AuNPs) could recognize RCA product to produce enzymatic electrochemical signal. Under optimal conditions, the calibration curve of synthetic target DNA had good linearity from 10 aM to 10 pM with a detection limit of 6.76 aM (S/N = 3). The developed method had been successfully applied to detect Salmonella as low as 6 CFU mL−1 in real milk sample. This proposed strategy showed great potential for clinical diagnosis, food safety and environmental monitoring.  相似文献   

10.
This is the first ligase chain reaction used for diagnosis of spinal muscular atrophy (SMA). Universal fluorescent tri-probe ligation (UFTPL), a novel strategy used for distinguishing the multi-nucleotide alternations at single base, is developed to quantitatively analyze the SMN1/SMN2 genes in diagnosis of SMA. Ligase chain reaction was performed by adding three probes including universal fluorescent probe, connecting probe and recognizing probe to differentiate single nucleotide polymorphisms in UFTPL. Our approach was based on the two UFTPL products of survival motor neuron 1 (SMN1) and SMN2 genes (the difference of 9 mer) and analyzed by capillary electrophoresis (CE). We successfully determined various gene dosages of SMN1 and SMN2 genes in homologous or heterologous subjects. By using the UFTPL-CE method, the SMN1 and SMN2 genes were fully resolved with the resolution of 2.16 ± 0.37 (n = 3). The r values of SMN1 and SMN2 regression curves over a range of 1–4 copies were above 0.9944. Of the 48 DNA samples, the data of gene dosages were corresponding to that analyzed by conformation sensitive CE and denatured high-performance liquid chromatography (DHPLC). This technique was found to be a good methodology for quantification or determination of the relative genes having multi-nucleotide variants at single base.  相似文献   

11.
A sensitive, specific method for the collection and detection of pathogenic bacteria was demonstrated using quantum dots (QDs) as a fluorescence marker coupled with aptamers as the molecular recognition element by flow cytometry. The aptamer sequences were selected using a bacterium-based SELEX strategy in our laboratory for Vibrio parahaemolyticus and Salmonella typhimurium that, when applied in this method, allows for the specific recognition of the bacteria from complex mixtures including shrimp samples. Aptamer-modified QDs (QD-apt) were employed to selectively capture and simultaneously detect the target bacteria with high sensitivity using the fluorescence of the labeled QDs. The signal intensity is amplified due to the high photostability of QDs nanoparticles, resulting in improved sensitivity over methods using individual dye-labeled probes. This proposed method is promising for the sensitive detection of other pathogenic bacteria in food stuff if suitable aptamers are chosen. The method may also provide another potential platform for the application of aptamer-conjugated QDs in flow cytometry.  相似文献   

12.
The aim of this paper was to demonstrate a fluorescence measurement method for rapid detection of two bacterial count by using water-soluble quantum dots (QDs) as a fluorescence marker, and spectrofluorometer acted as detection apparatus, while Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were as detection target bacteria. Highly luminescent water-soluble CdSe QDs were first prepared by using thioglycolic acid (TGA) as a ligand, and were then covalently coupled with target bacteria. The bacterial cell images were obtained using fluorescence microscopy. Our results showed that CdSe QDs prepared in water phase were highly luminescent, stable, and successfully conjugated with E. coli and S. aureus. The fluorescence method could detect 102-107 CFU/mL total count of E. coli and S. aureus in 1-2 h and the low detection limit is 102 CFU/mL. A linear relationship of the fluorescence peak intensity and log total count of E. coli and S. aureus have been established using the equation Y = 118.68X − 141.75 (r = 0.9907).  相似文献   

13.
Point mutations of the K-ras gene located in codons 12 and 13 cause poor responses to the anti-epidermal growth factor receptor (anti-EGFR) therapy of colorectal cancer (CRC) patients. Besides, mutations of K-ras gene have also been proven to play an important role in human tumor progression. We established a simple and effective capillary electrophoresis (CE) method for simultaneous point mutation detection in codons 12 and 13 of K-ras gene. We combined one universal fluorescence-based nonhuman-sequence primer and two fragment-oriented primers in one tube, and performed this two-in-one polymerase chain reaction (PCR). PCR fragments included wild type and seven point mutations at codons 12 and 13 of K-ras gene. The amplicons were analyzed by single-strand conformation polymorphism (SSCP)-CE method. The CE analysis was performed by using a 1× Tris–borate–EDTA (TBE) buffer containing 1.5% (w/v) hydroxyethylcellulose (HEC) (MW 250 000) under reverse polarity with 15 °C and 30 °C. Ninety colorectal cancer patients were blindly genotyped using this developed method. The results showed good agreement with those of DNA sequencing method. The SSCP-CE was feasible for mutation screening of K-ras gene in populations.  相似文献   

14.
O6-Methylguanine-DNA methyltransferase (MGMT) is one of the most important DNA-repair enzymes. Herein, a simple, sensitive and selective homogeneous fluorescence assay strategy is developed for the detection of MGMT on the basis of target-mediated two consecutive endonuclease reactions. The activity assay of MGMT is firstly accomplished using a hairpin-structured DNA substrate to offer a specific recognition site on the substrate DNA for restriction endonuclease PvuII, and thus to initiate the first endonuclease reaction. The product which activates the second endonuclease reaction allows an efficient amplification approach to create an abundance of fluorescence signal reporters. The first endonuclease reaction offers the method high specificity and the second one furnishes the assay improved sensitivity. The results reveal that the MGMT assay strategy shows dynamic responses in the concentration range from 1 to 120 ng mL−1 with a detection limit of 0.5 ng mL−1. By simply altering the alkylated bases, this strategy can also be extended for the detection of other alkyltransferases. Therefore, the developed strategy might provide an intrinsically convenient, sensitive and specific platform for alkyltransferase activate assay and related biochemical studies due to its label-free, homogeneous, and fluorescence-based detection format.  相似文献   

15.
A magneto-genosensing approach for the detection of the three most common pathogenic bacteria in food safety, such as Salmonella, Listeria and Escherichia coli is presented. The methodology is based on the detection of the tagged amplified DNA obtained by single-tagging PCR with a set of specific primers for each pathogen, followed by electrochemical magneto-genosensing on silica magnetic particles. A set of primers were selected for the amplification of the invA (278 bp), prfA (217 bp) and eaeA (151 bp) being one of the primers for each set tagged with fluorescein, biotin and digoxigenin coding for Salmonella enterica, Listeria monocytogenes and E. coli, respectively. The single-tagged amplicons were then immobilized on silica MPs based on the nucleic acid-binding properties of silica particles in the presence of the chaotropic agent as guanidinium thiocyanate. The assessment of the silica MPs as a platform for electrochemical magneto-genosensing is described, including the main parameters to selectively attach longer dsDNA fragments instead of shorter ssDNA primers based on their negative charge density of the sugar-phosphate backbone. This approach resulted to be a promising detection tool with sensing features of rapidity and sensitivity very suitable to be implemented on DNA biosensors and microfluidic platforms.  相似文献   

16.
A single step synthesis of 2,3-dialkyl-6-nitro-quinazolin-4(3H)-imines and 3,5-dialkyl-9-nitro-imidazo-[1,2-c]-quinazolin-2(3H)-ones from simple carbonyl compounds, primary amines or amino acid methyl esters and 2-azido-5-nitro-benzonitrile was developed. Key intermediates were N,N′-disubstituted amidines obtained by rearrangement of 4,5-dihydrotriazoles; the new heterocyclic rings were formed by spontaneous intramolecular reaction of the amino and cyano groups which are present in the intermediates.  相似文献   

17.
Typhoid fever is a life threatening bacterial infection that remains a major global health concern. This continued high burden associated with significant morbidity and mortality rate demands specific and rapid detection technique. This work reports a new sandwich type fluorescence immunoassay format using polymyxin B, a cationic receptor molecule, as a binder agent while anti-Vi antibody served as the capturing agent for specifically detecting Salmonella enterica serovar Typhi. Anti-Vi IgG antibody raised against Vi–BSA conjugate revealed affinity of 7.779 nM−1 signifying immunodominancy of O-acetyls groups in Vi polysaccharide. The detection limit of the developed assay was around 101 cells mL−1 of Vi expressing Salmonella enterica serovar Typhi with a correlation coefficient (R2) equal to 0.97. Positive response obtained for all the tested serovar Typhi clinical isolates as well as the pathogen spiked blood samples recommended specificity and accuracy of Vi antigen as a biomarker during typhoid fever. The intra- and inter-assay precision with Vi spiked samples were satisfactory revealing coefficient of variance (CV%) with a mean of 4.05% and 5.97% respectively. This may be the novel attempt and constructive report on the fluorescence based detection of Vi antigen of serovar Typhi in the epidemic as well as pandemic outbreaks.  相似文献   

18.
Hui-Xin Liu  Ying Hu  Yong Liu  Ling Yang 《Talanta》2009,79(5):1433-1336
A simple and sensitive method for determination of the O-demethylation activity of rat, dog, minipig, and human liver micrsomes toward paeonol using ultra-performance liquid chromatography with mass detection (UPLC-MS) has been developed. The method uses chemically synthesized O-demethylated metabolite of paeonol (2,4-dihydroxyacetophenone, DHA) as a standard for method validation. Validation was done with respect to specificity, linearity, detection limit, recovery, stability, precision and accuracy. The chromatographic separation was achieved on a UPLC BEH C18 column (50 mm × 2.1 mm i.d., 1.7 μm), with phase of acetonitrile-water (ratio 30:70). Selective ion reaction (SIR) monitor was specific for paeonol, DHA and I.S. The method was specific since there were no interference peaks from the reaction matrix. The calibration curve for DHA was linear from 0.5-100 μM with r2 = 0.9999. The newly developed method has good precision and accuracy. The method was successfully used to determine the kinetics of DHA activities toward paeonol in liver microsomes from different species. Dog liver microsomes (DLMs) were the most active in paeonol O-demethylation (709.7 pmol/min/mg protein) followed by rat liver microsomes (RLMs) (579.6 pmol/min/mg protein), HLMs (569.3 pmol/min/mg protein), and then minipig liver microsomes (PLMs) (417.3 pmol/min/mg protein). The developed method was appropriated for rapid screening paeonol O-demethylation activity in liver microsomes from different species.  相似文献   

19.
Rapid detection and enumeration of pathogens is essential for monitoring contamination and spoilage of food products to ensure improved quality control management. Functionalized polymeric magnetic nanoconstructs (FPMNCs) were developed as an effective immunomagnetic separator and sensing platform for the selective capturing of Salmonella typhimurium. Novel FPMNCs were prepared in three stages involving synthesis of iron oxide (IO) dispersion, capping with sodium oleate and encapsulation of preformed IO nanoparticles by in-situ free radical emulsion polymerization of styrene (St), methyl methacrylate (MMA) and acetoacetoxy ethylmethacrylate (AAEM). PMMA improves the stability of FPMNCs by bridging extremely hydrophobic PS and hydrophilic PAAEM. Core-shell morphology of hydrophobic core of IO, PS & PMMA and hydrophilic shell of PAAEM was demonstrated by SEM, TEM and FTIR studies. FPMNCs with surface functionalized acetoacetoxy groups were covalently attached with polyclonal antibodies against Salmonella common structural antigen (CSA-1-Ab) without using any linker and catalyst. Colorimetric readout signal was acquired using CSA-1-Ab-HRP as secondary antibody after formation of sandwich immunocomplex with bacteria where the optical density of the samples were recorded using ELISA plate reader at 450 nm. The developed immunoassay was specific and selective which captures only targeted S. typhimurium with a detection limit of 10 cells/mL lower than infectious dose of salmonellosis infection. Minimal interference of food matrix with high signal to noise ratio was shown by various food samples. In addition, the performance of developed FPMNC based immunoassay was superior to commercially available immunomagnetic microbeads demonstrating undisputed advantage for capturing and detecting specific bacteria without any pre-enrichment of sample.  相似文献   

20.
Nucleic acid sequence based amplification (NASBA) is a versatile in vitro nucleic acid amplification method. In this work, RNA amplification and labeling by NASBA and microarray analysis are combined in a one-step process. The NASBA reaction is performed in direct contact with capture probes. These probes are bound to surface-attached hydrogel spots generated at the chip surfaces by using a simple printing and UV irradiation process. Five gene expression and SNP parameters with known relevance in breast cancer diagnostics were chosen to demonstrate that multiplex NASBA-on-microarray analysis is possible. A minimum amount of 10 pg of total RNA was shown to be sufficient for the detection of the reference parameter RPS18, which demonstrates that the detection limit of the microarray-based NASBA assays theoretically allows single-cell assays to be performed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号