首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel triazine-type chiral derivatization reagent, i.e., (S)-2,5-dioxopyrrolidin-1-yl-1-(4,6-dimethoxy-1,3,5-triazin-2-yl) pyrrolidine-2-carboxylate (DMT-(S)-Pro-OSu), was developed for the highly sensitive and selective detection of chiral amines and amino acids by UPLC–MS/MS analysis. The enantiomers of amino acids were easily labeled with the reagents at room temperature within 40 min in an alkaline medium containing triethylamine. The diastereomers derived from proteolytic amino acids, except serine, were well separated under isocratic elution conditions by reversed-phase chromatography using an ODS column (Rs = 1.2–9.0). dl-Serine was separated by use of an ADME column which has relatively higher polar surface than the conventional ODS column. The characteristic product ions, i.e., m/z 195.3 and m/z 209.3, were detected from all the diastereomers by the collision-induced dissociation of the protonated molecule. A highly sensitive detection on the amol–fmol level was obtained from the selected reaction monitoring (SRM) chromatogram. The chiral amines (e.g., adrenaline and noradrenaline) labeled with DMT-(S)-Pro-OSu were also well separated and sensitively detected by the present procedure. The method using DMT-(S)-Pro-OSu was used for the determination of dl-amino acids in the human saliva from healthy volunteers. Various l-amino acids were identified in the saliva. Furthermore, d-alanine (d-Ala) and d-proline (d-Pro) were also detected in relatively high concentrations (>5%). The ratio was higher in male saliva than in female saliva. However, the difference in the ratio of d-Ala for one day was not very high and the effect of foods and beverage seemed to be negligible. Based on the results using l-Ala-d3, the d-Ala in saliva seemed to be produced due to the racemization with some enzymes such as racemase. The racemization reaction was reversible, i.e., d-Ala-d3 was also racemized to l-Ala-d3 in saliva. Thus, care should be taken during the analysis of dl-amino acids in saliva. The present method using DMT-(S)-Pro-OSu may be applicable for the determination of chiral amine metabolomics, because the resulting derivatives produce the same product ions without relation to the compounds and show highly sensitive detection in the SRM mode of MS/MS. Consequently, DMT-(S)-Pro-OSu seems to be a useful chiral derivatization reagent for the determination of amines and amino acids in biological samples.  相似文献   

2.
A method is described for increasing the sensitivity and selectivity of determination of phenyl carboxylic acids (low molecular sepsis markers) in blood using gas chromatography/mass spectrometry. Mass spectra of trimethylsilyl and tert-butyldimethylsilyl derivatives of the target compounds are studied, their structures and molecular ion fragmentation to characteristic m/z values are determined. To prevent the ingress of derivatization agents into the chromatograph-mass spectrometer, the possibility of reagent substitution with inert solvents after the derivatization reaction is studied. The loss of analytes derivatives in the process is estimated. The time dependence of the degree of derivatization of phenyl carboxylic acids in a wide concentration range is investigates using blood serum samples. The chosen optimum conditions are universal for the entire range of analytes over a wide concentration range.  相似文献   

3.
Mass spectrometry has become a popular analytical tool because of its high sensitivity and specificity. The use of a chiral derivatization reagent for the mass spectrometry (MS) detection seems to be efficient for the enantiomeric separation of racemates. However, the number of chiral reagents for the liquid chromatography (LC)–MS/MS analysis is very limited. According to these observations, we are currently in the process of developing novel labeling reagents for chiral molecules in MS/MS analysis. The derivatization reagent that is effective for enhancing not only the electrospray ionization–MS/MS sensitivity but also the reversed-phase LC resolution of carboxylic acid enantiomers should have a highly proton-affinitive moiety and an asymmetric structure near the reactive functional group. Furthermore, the resulting derivative has to provide a characteristic product ion suitable for the selected reaction monitoring. Based upon these considerations, a series of prolylamidepyridines ((S)-N-pyrrolidine-2-carboxylic acid N-(pyridine-2-yl)amide (PCP2), (S)-N-pyrrolidine-2-carboxylic acid N-(pyridine-3-yl)amide, and (S)-N-pyrrolidine-2-carboxylic acid N-(pyridine-4-yl)amide) was synthesized as ideal labeling reagents for the enantioseparation of chiral carboxylic acids and evaluated in terms of separation efficiency and detection sensitivity by ultra-performance LC (UPLC)–MS/MS. Among the synthesized reagents, PCP2 was the most efficient chiral derivatization reagent for the enantioseparation of carboxylic acid. The Rs values and the detection limits of the derivatives of non-steroidal anti-inflammatory drugs, which were selected as the representative carboxylic acids, were in the range of 2.52–6.07 and 49–260 amol, respectively. The sensitive detection of biological carboxylic acids (detection limits, 32–520 amol) was also carried out by the proposed method using PCP2 and UPLC–MS/MS. The PCP2 was applied to the determination of carboxylic acids in human saliva. Several biological carboxylic acids, such as lactic acid (LA), 3-hydroxybutylic acid, maric acid, succinic acid, α-ketoglutalic acid, and citric acid, were clearly identified in the saliva of healthy persons and diabetic patients. Furthermore, the ratio of d-LA in diabetic patients was higher than that in normal subjects. Judging from these results, PCP2 seems to be a useful chiral derivatization reagent for the determination not only of chiral, but also achiral, carboxylic acids in real samples.
Figure
Labeling reagent for carboxylic acids in chiral metabolomics study  相似文献   

4.
A rapid method for fatty acids (FAs) comparative profiling based on carboxyl-specific stable isotope labeling (SIL) and direct infusion electrospray ionization–ion mobility–mass spectrometry (ESI–IM–MS) is established. The design of the method takes advantage of the three-dimensional characteristics of IM–MS including drift time, m/z and ion intensity, for comparison of d0-/d6-2,4-dimethoxy-6-piperazin-1-yl pyrimidine (DMPP)-labeled FAs. In particular, without chromatographic separation, the method allowed direct FAs profiling in complex samples due to the advantageous priority of DMPP in signal enhancement as well as the extra resolution that IM–MS offered. Additionally, the d0-/d6-DMPP-labeled FAs showed expected features, including very similar drift times, 6 Da mass deviations, specific reporter ions, similar MS responses, and adherence to the drift time rule regarding the influence of carbon chain length and unsaturation on relative drift times. Therefore, the introduction of isotope analogs minimized the matrix effect and variations in quantification and ensured accurate identification of non-targeted FAs by those typical features. Peak intensity ratios between d0-/d6-DMPP-labeled ions were subsequently used in relative quantification for the detected FAs. The established strategy has been applied successfully in the rapid profiling of trace free FAs between normal and cancerous human thyroid tissues. Sixteen free FAs were found with the increased level with a statistically significant difference (p < 0.05) compared to the normal tissue samples. The integrated SIL technique and ESI–IM–MS are expected to serve as an alternative tool for high-throughput analysis of FAs in complex samples.  相似文献   

5.
l-Pyroglutamic acid succinimidyl ester (l-PGA-OSu) and its isotopic variant (l-PGA[d5]-OSu) were newly synthesized and evaluated as the chiral labeling reagents for the enantioseparation of amino acids, in terms of separation efficiency by reversed-phase chromatography and detection sensitivity by ESI-MS/MS. The enantiomers of amino acids were easily labeled with the reagents at 60 °C within 10 min in an alkaline medium containing triethylamine. Although all the diastereomers derived from 18 proteolytic amino acids could not be satisfactorily separated, the pairs of 9 amino acids were completely separated by reversed-phase chromatography using the small particle (1.7 μm) ODS column (Rs = 1.95–8.05). The characteristic daughter ions, i.e., m/z 84.04 and m/z 89.04, were detected from all the derivatives by the collision induced dissociation of the protonated molecular ions. A highly sensitive detection at a low-fmol level (0.5–3.2 fmol) was also obtained from the selected reaction monitoring (SRM) chromatograms. An isotope labeling strategy using light and heavy l-PGA-OSu for the differential analysis of the dl-amino acids in different sample groups is also presented in this paper. The differential analysis of biological sample (i.e., human serum) and food product (i.e., yogurt) were tried to demonstrate the efficiency of the proposed method. The ratios of the dl-amino acids in human serum samples, spiked with the different concentrations of d-amino acids, were determined by the procedures using l-PGA-OSu and l-PGA[d5]-OSu. The d/l ratios in the two sample groups at different concentrations of amino acids were similar to the theoretical values. Furthermore, the ratios of d/l-alanine values in different yogurt products were comparable to the ratios obtained from the d/l values using only light reagent (i.e., l-PGA-OSu). Consequently, the proposed strategy is useful for the differential analysis not only in biological samples but also in food products.  相似文献   

6.
Stable isotope‐coding coupled with mass spectrometry is a popular method for quantitative proteomics and peptide quantification. However, the efficiency of the derivatization reaction at a particular functional group, especially in complex structures, can affect accuracy. Here, we present a dual functional‐group derivatization of bioactive peptides followed by micro liquid chromatography‐tandem mass spectrometry (LC‐MS/MS). By separating the sensitivity‐enhancement and isotope‐coding derivatization reactions, suitable chemistries can be chosen. The peptide amino groups were reductively alkylated with acetaldehyde or acetaldehyde‐d4 to afford N‐alkylated products with different masses. This process is simple, quick and high‐yield, and accurate comparative analysis can be achieved for the mass‐differentiated peptides. Then, the carboxyl groups were derivatized with 1‐(2‐pyrimidinyl)piperazine to increase MS/MS sensitivity. Angiotensins I–IV, bradykinin and neurotensin were analyzed after online solid phase extraction by micro LC‐MS/MS. In all instances, a greater than 17‐fold increase in sensitivity was achieved, compared with the analyses of the underivatized peptides. Furthermore, the values obtained from the present method were in agreement with the result from isotope dilution quantification using isotopically labeled angiotensin I [Asp‐Arg‐(Val‐d8)‐Tyr‐Ile‐His‐Pro‐(Phe‐d8)‐His‐Leu]. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
A multifunctional isothiocyanate-based isotope labeling reagent, [d 0]-/[d 6]-4,6-dimethoxy pyrimidine-2-isothiocyanate (DMPITC), has been developed for accurate N-terminus identification in peptide sequencing and comparative protein analysis by ESI Ion-trap TOF mass spectrometry. In contrast with the conventional labeling reagent phenyl isothiocyanate (PITC), DMPITC showed more desirable properties such as rapid labeling, sensitivity enhancement, and facilitating peptide sequencing. More significantly, DMPITC-based labeling strategy possessed the capacity of higher reliable N-terminus identification owning to the high-yield b1 ion combined with the isotope validation of 6 Da. Meanwhile, it also showed potential in differentiating isomeric residues of leucine and isoleucine at N-terminus on the basis of the relative abundance ratios between the fragment ions of their respective b1 ions. The strategy not only allows accurate interpretation for peptide but also ensures rapid and sensitive comparative analysis for protein by direct MS analysis. Using trypsin-digested bovine serum albumin (BSA), both peptide N-terminus identification and quantitative analysis were accomplished with high accuracy, efficiency, and reproducibility. The application of DMPITC-based labeling strategy is expected to serve as a promising tool for proteome research.  相似文献   

8.
The carboxyl groups of tryptic peptides were derivatized with a tertiary or quaternary amine labeling reagent to generate more highly charged peptide ions that fragment efficiently by electron transfer dissociation (ETD). All peptide carboxyl groups—aspartic and glutamic acid side-chains as well as C-termini—were derivatized with an average reaction efficiency of 99 %. This nearly complete labeling avoids making complex peptide mixtures even more complex because of partially-labeled products, and it allows the use of static modifications during database searching. Alkyl tertiary amines were found to be the optimal labeling reagent among the four types tested. Charge states are substantially higher for derivatized peptides: a modified tryptic digest of bovine serum albumin (BSA) generates ~90% of its precursor ions with z? > ?2, compared with less than 40 % for the unmodified sample. The increased charge density of modified peptide ions yields highly efficient ETD fragmentation, leading to many additional peptide identifications and higher sequence coverage (e.g., 70 % for modified versus only 43 % for unmodified BSA). The utility of this labeling strategy was demonstrated on a tryptic digest of ribosomal proteins isolated from yeast cells. Peptide derivatization of this sample produced an increase in the number of identified proteins, a >50 % increase in the sequence coverage of these proteins, and a doubling of the number of peptide spectral matches. This carboxyl derivatization strategy greatly improves proteome coverage obtained from ETD-MS/MS of tryptic digests, and we anticipate that it will also enhance identification and localization of post-translational modifications.
Figure
?  相似文献   

9.
Sun Z  You J  Song C  Xia L 《Talanta》2011,85(2):1088-1099
A new labeling reagent for carboxylic acids, 2-(2-(anthracen-10-yl)-1H-phenanthro[9,10-d]imidazol-1-yl)ethyl 4-methylbenzenesulfonate (APIETS) has been designed and synthesized. It was used to label eight fatty acids (lauric acid, myristic acid, palmitic acid, stearic acid, arachidic acid, oleic acid, linoleic acid and linolenic acid) and four hydroxy pentacyclic triterpene acids (oleanolic acid, ursolic acid, betulinic acid and maslinic acid), successfully. APIETS could easily and quickly label carboxylic acids in the presence of K2CO3 catalyst at 85 °C for 35 min in N,N-dimethylformamide solvent. The carboxylic acids derivatives were separated on a C8 reversed-phase column with gradient elution and fluorescence detection at λex/λem = 315/435 nm. Identification of these derivatives was carried out by online mass spectrometry with atmospheric pressure chemical ionization in positive ion mode. The detection limits obtained were 13.37-30.26 fmol (signal-to-noise ratio of 3). The proposed method has been applied to the quantification of carboxylic acids in sultana raisin (Thompson seedless), hawthorn flake (Crataegus pinnatifida Bge.), Lycium barbarum seed oil and Microula sikkimensis seed oil with recoveries over 95.3%. It has been demonstrated that APIETS is a prominent labeling reagent for determining carboxylic acids with high performance liquid chromatography.  相似文献   

10.
Isotope-coded reagents have been developed for labeling of amino acids, phenols and fatty acids, but not for alcohols. In this work, a simple reaction based on direct N-alkylpyridinium isotope quaternization (NAPIQ) was developed for mild derivatization of cholesterol and fatty alcohols. Different from the conventional quaternary reagents with cations on themselves, two simple and charge-neutral reagents: pyridine and d5-pyridine directly attached N-cationic tag onto the target compounds in the presence of trifluoromethanesulfonic anhydride (Tf2O) without tedious sample preparation. The derivatization completed in 5 min and achieved charge labeling of the target compounds, which significantly improved the detection limits of analytes by 103-folds in further analysis by matrix-assisted laser desorption/ionization Fourier transform mass spectrometry (MALDI–FTMS). The use of commercially available d0/d5-pyridine pairs facilitated isotope-coded chemical derivatization and avoided the use of isotope-labeled internal standards; the excess pyridine did not affect the signals of analytes. Utility of the NAPIQ method was examined in the identification of cholesterol and fatty alcohols in small amount of human hair sample (<0.5 mg). The fluctuation of total cholesterol in human body was profiled during time by quantitatively comparing the different segments of a single strand of hair. This study combines the direct pyridinium quaternization with MALDI–FTMS, which offers a perspective and an alternative tool for the identification and quantification of substances in biological matrix by comparing d0/d5 pairs, especially when isotope-labeled internal standards are unavailable.  相似文献   

11.
Steroid hormones play important roles in mammal at very low concentrations and are associated with numerous endocrinology and oncology diseases. Therefore, quantitative analysis of steroid hormones can provide crucial information for uncovering underlying mechanisms of steroid hormones related diseases. In the current study, we developed a sensitive method for the detection of steroid hormones (progesterone, dehydroepiandrosterone, testosterone, pregnenolone, 17-hydroxyprogesterone, androstenedione and 17α-hydroxypregnenolone) in body fluids by stable isotope labeling coupled with liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) analysis. In this respect, a pair of isotopes labeling reagents, Girard reagent P (GP) and d5-Girard reagent P (d5-GP), were synthesized and utilized to label steroid hormones in follicular fluid samples and steroid hormone standards, respectively. The heavy labeled standards were used as internal standards for quantification to minimize quantitation deviation in MS analysis due to the matrix and ion suppression effects. The ionization efficiencies of steroid hormones were greatly improved by 4–504 folds through the introduction of a permanent charged moiety of quaternary ammonium from GP. Using the developed method, we successfully quantified steroid hormones in human follicular fluid. We found that the contents of testosterone and androstenedione exhibited significant increase while the content of pregnenolone had significant decrease in follicular fluid of polycystic ovarian syndrome (PCOS) patients compared with healthy controls, indicating that these steroid hormones with significant change may contribute to the pathogenesis of PCOS. Taken together, the developed stable isotope labeling coupled LC-ESI-MS/MS analysis demonstrated to be a promising method for the sensitive and accurate determination of steroid hormones, which may facilitate the in-depth investigation of steroid hormones related diseases.  相似文献   

12.
A pre-column derivatization method for the simple, sensitive determination of biogenic amines using 10-ethyl-acridine-3-sulfonyl chloride (EASC) as labeling reagent with fluorescence detection and mass spectrometry (MS) identification has been developed. After pre-column derivatization, the labeled biogenic amines were separated on a Hypersil BDS-C18 column by gradient elution. The derivatives showed an intense protonated molecular ion corresponding m/z [M + H]+ in positive-ion mode. The collision-induced dissociation of protonated molecular ion formed specific fragment ions at m/z 196.5, m/z 222.7, m/z 224.4 and m/z 272.5, m/z 286.2. Satisfactory linear responses were observed at the concentration range of 0.02?C10 ??mol L?1 with coefficients of >0.9993. Detection limits obtained by the analysis of a derivatized standard containing 0.2 pmol of each biogenic amine, were from 20.22 to 109.2 fmol (at a signal-to-noise ratio of 3). The relative standard deviations of retention times and peak areas for each biogenic amine were <0.96 and 3.22%, respectively. Recoveries except for PUT were in the range of 96.7?C103.6% for chicken sausage and 95.8?C104.6% for pork sausage The established method for the determination of biogenic amines except for PUT from real samples was satisfactory.  相似文献   

13.
A rapid analytical method for amines and amino acids was developed, involving derivatization with the novel reagent 3‐aminopyridyl‐N‐hydroxysuccinimidyl carbamate (APDS), followed by reversed‐phase high‐performance liquid chromatography and electrospray ionization tandem mass spectrometry (HPLC/ESI‐MS/MS). More than 100 different analytes with amino groups, including amino acids in biological fluids such as mammalian plasma, could be measured within 10 min. The analytes were easily derivatized with APDS under the mild conditions. Selective reaction monitoring of ESI‐MS/MS in positive mode was carried out to include the transitions of all of the protonated molecular ions of analytes derivatized with APDS to the common fragment at m/z 121, which was derived from the amino pyridyl moiety of the reagent. We evaluated the retention time precision, the quantification limits, the linearity, the intra‐ and inter‐day precisions and the accuracy of 22 typical amino acids found in biological fluids, by analyzing a standard amino acid mixture and rat plasma. The intra‐day relative standard deviations (RSDs) of the retention times of the 22 amino acids and their internal standards were within 0.9% and the inter‐day RSDs were less than 1.1%, except for asparagines, with an RSD of 1.9%. The intra‐day and inter‐day RSDs of amino acid analyses in rat plasma were within 8.0% and 4.5%, respectively. The method, which facilitates the amino acid analysis of more than 100 samples in a day, represents an alternative to traditional amino acid analysis techniques, such as chromatography using postcolumn derivatization by ninhydrin. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
It is shown that the use of dimethylformamide dimethylacetal for the derivatization of analytes in gas chromatography/mass spectrometry cannot be restricted by the known conversion of carboxylic acids, phenols, and thiols into their methyl esters (ethers), as well as by the conversion of non-volatile amino acids (and C-amino compounds of other classes) into their dimethylaminomethylene derivatives. The application of this reagent to the derivatization of hydrazine derivatives and volatile carbonyl-containing analytes is considered. In the last case, the reaction proceeds selectively via CH2 and/or CH3 groups in the α-position to the carbonyl fragment. The principal predestination of the derivatization of such analytes is their characterization by differences of gas-chromatographic retention indices (ΔRI) of reaction products and initial substrates. The ranges of variation of such increments, ΔRI, appeared to be different for different subgroups of carbonyl compounds; this allowed us to determine their structures more precisely. The mass spectra of C-dimethylaminomethylene derivatives of some carbonyl compounds, preferably 2-substituted 1-methyl- and 1-aryl-3-(dimethylamino) prop-2-en-1-ones, revealed intense [M–17] peaks. The appearance of these signals can be explained by the migration of a hydrogen atom and the formation of [М–ОН]+ ions.  相似文献   

15.
A new approach to the selective comparative metabolite profiling of carboxylic acids in rat urine was established using CE‐MS and a method for positively pre‐charged and 2H‐coded derivatization. Novel derivatizing reagents, N‐alkyl‐4‐aminomethyl‐pyridinum iodide (alkyl=butyl, butyl‐d9 or hexyl), containing quaternary amine and stable‐isotope atoms (deuterium), were introduced for the derivatization of carboxylic acids. CE separation in positive polarity showed high reproducibility (0.99–1.32% RSD of migration time) and eliminated problems with capillary coating known in CE‐MS anion analyses. Essentially complete ionization and increased hydrophobicity after the derivatization also enhanced MS detection sensitivity (e.g. formic acid was detected at 0.5 pg). Simultaneous derivatization of one sample using two structurally similar reagents, N‐butyl‐4‐aminomethyl‐pyridinum iodide (BAMP) and N‐hexyl‐4‐aminomethyl‐pyridinum iodide, provided additional information for recognizing a carboxylic acid in an unknown sample. Moreover, characteristic fragmentation acquired by online CE‐MS/MS allowed for identification and categorization of carboxylic acids. Applying this method on rat urine, we found 59 ions matching the characteristic patterns of carboxylic acids. From these 59, 32 ions were positively identified and confirmed with standards. For comparative analysis, 24 standard carboxylic acids were derivatized by chemically identical but isotopically distinct BAMP and N‐butyl‐d9‐4‐aminomethyl‐pyridinium iodide, and their derivatization limits and linearity ranges were determined. Comparative analysis was also performed on two individual urine samples derivatized with BAMP and N‐butyl‐d9‐4‐aminomethyl‐pyridinium iodide. The metabolite profiling variation between these two samples was clearly visualized.  相似文献   

16.
Decarboxylation is known to be the major fragmentation pathway for the deprotonated carboxylic acids in collision-induced dissociation (CID). However, in the CID mass spectrum of deprotonated benzoic acid (m/z 121) recorded on a Q-orbitrap mass spectrometer, the dominant peak was found to be m/z 93 instead of the anticipated m/z 77. Based on theoretical calculations, 18O-isotope labeling and MS3 experiments, we demonstrated that the fragmentation of benzoate anion begins with decarboxylation, but the initial phenide anion (m/z 77) can react with trace O2 in the mass analyzer to produce phenolate anion (m/z 93) and other oxygen-containing ions. Thus oxygen adducts should be considered when annotating the MS/MS spectra of benzoic acids.  相似文献   

17.
In consideration of its relatively constant urinary excretion rate, creatinine (2-amino-1-methyl-5H-imidazol-4-one, MW 113.1) in urine is a useful endogenous biochemical parameter to correct the urinary excretion rate of numerous endogenous and exogenous substances. Reliable measurement of creatinine by gas chromatography (GC)-based methods requires derivatization of its amine and keto groups. Creatinine exists in equilibrium with its open form creatine (methylguanidoacetic acid, MW 131.1), which has a guanidine and a carboxylic group. Trimethylsilylation and trifluoroacetylation of creatinine and creatine are the oldest reported derivatization methods for their GC-mass spectrometry (MS) analysis in human serum using flame- or electron-ionization. We performed GC-MS studies on the derivatization of creatinine (d0-creatinine), [methylo-2H3]creatinine (d3-creatinine, internal standard) and creatine (d0-creatine) with N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) using standard derivatization conditions (60 min, 60 °C), yet in the absence of any base. Reaction products were characterized both in the negative-ion chemical ionization (NICI) and in the positive-ion chemical ionization (PICI) mode. Creatinine and creatine reacted with BSTFA to form several derivatives. Their early eluting N,N,O-tris(trimethylsilyl) derivatives (8.9 min) were found to be useful for the precise and accurate measurement of the sum of creatinine and creatine in human urine (10 µL, up to 20 mM) by selected-ion monitoring (SIM) of m/z 271 (d0-creatinine/d0-creatine) and m/z 274 (d3-creatinine) in the NICI mode. In the PICI mode, SIM of m/z 256, m/z 259, m/z 272 and m/z 275 was performed. BSTFA derivatization of d0-creatine from a freshly prepared solution in distilled water resulted in formation of two lMate-eluting derivatives (14.08 min, 14.72 min), presumably creatinyl-creatinine, with the creatininyl residue existing in its enol form (14.08 min) and keto form (14.72 min). Our results suggest that BSTFA derivatization does not allow specific analysis of creatine and creatinine by GC-MS. Preliminary analyses suggest that pentafluoropropionic anhydride (PFPA) is also not useful for the measurement of creatinine in the presence of creatine. Both BSTFA and PFPA facilitate the conversion of creatine to creatinine. Specific measurement of creatinine in urine is possible by using pentafluorobenzyl bromide in aqueous acetone.  相似文献   

18.
A pre-column derivatization method for the sensitive determination of amines using a labeling reagent 2-(11H-benzo[a]-carbazol-11-yl) ethyl chloroformate (BCEC-Cl) followed by high-performance liquid chromatography with fluorescence detection has been developed. Identification of derivatives was carried out by LC/APCI/MS in positive-ion mode. The chromophore of 1,2-benzo-3,4-dihydrocarbazole-9-ethyl chloroformate (BCEOC-Cl) reagent was replaced by 2-(11H-benzo[a]-carbazol-11-yl) ethyl functional group, which resulted in a sensitive fluorescence derivatizing reagent BCEC-Cl. BCEC-Cl could easily and quickly label amines. Derivatives were stable enough to be efficiently analyzed by HPLC and showed an intense protonated molecular ion corresponding m/z [M + H]+ under APCI/MS in positive-ion mode. The collision-induced dissociation of the protonated molecular ion formed characteristic fragment ions at m/z 261.8 and m/z 243.8 corresponding to the cleavages of CH2O-CO and CH2-OCO bonds. Studies on derivatization demonstrated excellent derivative yields over the pH 9.0-10.0. Maximal yields close to 100% were observed with three- to four-fold molar reagent excess. In addition, the detection responses for BCEC-derivatives were compared to those obtained using 1,2-benzo-3,4-dihydrocarbazole-9-ethyl chloroformate (BCEOC-Cl) and 9-fluorenyl methylchloroformate (FMOC-Cl) as labeling reagents. The ratios IBCEC/IBCEOC = 1.94-2.17 and IBCEC/IFMOC = 1.04-2.19 for fluorescent (FL) responses (here, I was relative fluorescence intensity). Separation of the derivatized amines had been optimized on reversed-phase Eclipse XDB-C8 column. Detection limits calculated from 0.50 pmol injection, at a signal-to-noise ratio of 3, were 1.77-14.4 fmol. The relative standard deviations for within-day determination (n = 11) were 1.84-2.89% for the tested amines. The mean intra- and inter-assay precision for all amines levels were <3.64% and 2.52%, respectively. The mean recoveries ranged from 96.6% to 107.1% with their standard deviations in the range of 0.8-2.7. Excellent linear responses were observed with coefficients of >0.9996.  相似文献   

19.
Benzylic rearrangement stable isotope labeling (BRSIL) was explored to quantify the guanidino and ureido compounds (GCs and UCs). This method employed a common reagent, benzil, to label the guanidino and ureido groups through nucleophilic attacking then benzylic migrating. The use of BRSIL was investigated in the analysis of five GCs (creatine, l-arginine, homoarginine, 4-guanidinobutyric acid, and methylguanidine) and two UCs (urea and citrulline). The labeling was found simple and specific. The introduction of bi-phenyl group and the generation of nitrogen heterocyclic ring in the benzil-d0/d5 labeled GCs and UCs improved the retention behaviors in liquid chromatography (LC) and increased the sensitivity of electrospray ionization mass spectrometry (ESI MS) detection. The fragment ion pairs of m/z 182/187 and m/z 210/215 from the benzil-d0/d5 tags facilitated the discovery of potential GCs and UCs candidates residing in biological matrices. The use of BRSIL combined with LC-ESI MS was applied for simultaneously quantitation of GCs and UCs in thyroid tissues. It was demonstrated that nine GCs and UCs were detected, six of which were further quantified based on corresponding standards. It was concluded that five GCs and UCs (l-arginine, homoarginine, 4-guanidinobutyric acid, methylguanidine, and citrulline) were statistically significantly different (p < 0.05) between the para-carcinoma and carcinoma thyroid tissue samples.  相似文献   

20.
We have developed a highly sensitive and positively charged precolumn derivatization reagent, (5‐N‐succinimidoxy‐5‐oxopentyl)triphenylphosphonium bromide (SPTPP), for amines and amino acids in liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI‐MS/MS). The handling of the derivatization reaction is quite simple and the reagent reacts with the analytes rapidly and with high efficiency. The derivatized analytes were observed to form regular and intense product ions upon MS/MS analysis; thus, highly sensitive and selective detection was possible in the selected reaction monitoring (SRM) mode. The limits of detection of the SPTPP‐derivatized analytes were less than sub‐femtomole levels. The sensitivities of the derivatized analytes increased about 500‐fold compared to those of underivatized analytes. Since the hydrophobicities of the samples increased after their derivatization, the resolution of the analytes improved dramatically when a reversed‐phase system was used. The relative standard deviations of intra‐day and inter‐day variations were below 10.6% and 13.3%, respectively. The accuracy ranged between 86.6–113% and 83.4–113%, respectively. Furthermore, the developed reagent was used for the analysis of the neurotransmitter 4‐aminobutanoic acid (GABA) and oxidative stress markers such as oxidized, nitrated, and halogenated tyrosines in rat serum. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号