首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A novel method for the fabrication of paper-based microfluidic diagnostic devices is reported; it consists of selectively hydrophobizing paper using cellulose reactive hydrophobization agents. The hydrophilic–hydrophobic contrast of patterns so created has excellent ability to control capillary penetration of aqueous liquids in paper channels. Incorporating this idea with digital ink jet printing techniques, a new fabrication method of paper-based microfluidic devices is established. Ink jet printing can deliver biomolecules and indicator reagents with precision into the microfluidic patterns to form bio-chemical sensing zones within the device. This method thus allows the complete sensor, i.e. channel patterns and the detecting chemistries, to be fabricated only by two printing steps. This fabrication method can be scaled up and adapted to use high speed, high volume and low cost commercial printing technology. Sensors can be fabricated for specific tests, or they can be made as general devices to perform on-demand quantitative analytical tasks by incorporating the required detection chemistries for the required tasks.  相似文献   

2.
In this paper, we report the progress in using paper sizing chemistry to fabricate patterned paper for chemical and biological sensing applications. Patterned paper sizing uses paper sizing agents to selectively hydrophobize certain area of a sheet. The hydrophilic-hydrophobic contrast of the pattern so created has an excellent ability to control capillary penetration of aqueous liquids in channels of the pattern. Incorporating this idea with digital ink jet printing technique, a new fabrication method of paper-based microfluidic devices is established. Ink jet printing can deliver biomolecules and chemicals with precision into the microfluidic patterns to form biological/chemical sensing sites within the patterns, forming the complete sensing devices. This study shows the potential of combining paper sizing chemistry and ink jet printing to produce paper-based sensors at low cost and at commercial volume.  相似文献   

3.
A BODIPY(4,4-difluoro-4-bora-3a,4a-diaza-s-indacene)-based fluorometric sensor array has been developed for the highly sensitive detection of eight heavy-metal ions at micromolar concentration. The di-2-picolyamine (DPA) derivatives combine high affinities for a variety of heavy-metal ions with the capacity to perturb the fluorescence properties of BODIPY, making them perfectly suitable for the design of fluorometric sensor arrays for heavy-metal ions. 12 cross-reactive BODIPY fluorescent indicators provide facile identification of the heavy-metal ions using a standard chemometric approach (hierarchical clustering analysis); no misclassifications were found over 45 trials. Clear differentiation among heavy-metal ions as a function of concentration was also achieved, even down to 10−7 M. A semi-quantitative interpolation of the heavy-metal concentration is obtained by comparing the total Euclidean distance of the measurement with a set of known concentrations in the library.  相似文献   

4.
This paper describes a paper-based microfluidic analytical device for iron assay using a photomask printed with a 3D printer for fabrication of hydrophilic and hydrophobic zones on the paper by photolithography. Several designed photomasks for patterning paper-based microfluidic analytical devices can be printed with a 3D printer easily, rapidly and inexpensively. A chromatography paper was impregnated with the octadecyltrichlorosilane n-hexane solution and hydrophobized. After the hydrophobic zone of the paper was exposed to the UV light through the photomask, the hydrophilic zone was generated. The smallest functional hydrophilic channel and hydrophobic barrier were ca. 500 μm and ca. 100 μm in width, respectively. The fabrication method has high stability, resolution and precision for hydrophilic channel and hydrophobic barrier. This test paper was applied to the analysis of iron in water samples using a colorimetry with phenanthroline.  相似文献   

5.
Current microfluidic paper-based devices lack crucial components for fluid manipulation. We created a fluidic diode fabricated entirely on a single layer of paper to control the wicking of fluids. The fluidic diode is a two-terminal component that promotes or stops wicking along a paper channel. We further constructed a trigger and a delay valve based on the fluidic diode. Furthermore, we demonstrated a high-level functional circuit, consisting of a diode and a delay valve, to manipulate two fluids in a sequential manner. Our study provides new, transformative tools to manipulate fluid in microfluidic paper-based devices.  相似文献   

6.
This paper describes an efficient and high throughput method for fabricating three-dimensional (3D) paper-based microfluidic devices. The method avoids tedious alignment and assembly steps and eliminates a major bottleneck that has hindered the development of these types of devices. A single researcher now can prepare hundreds of devices within 1 h.  相似文献   

7.
Droplet-based microfluidics is a modular platform in high-throughput single-cell and small sample analyses. However, this droplet microfluidic system was widely fabricated using soft lithography or glass capillaries, which is expensive and technically demanding for various applications, limiting use in resource-poor settings. Besides, the variation in droplet size is also restricted due to the limitations on the operating forces that the paper-based platform is able to withstand. Herein, we develop a fully integrated paper-based droplet microfluidic platform for conducting droplet generation and cell encapsulation in independent aqueous droplets dispersed in a carrier oil by incorporating electric fields. Through imposing an electric field, the droplet size would decrease with increasing the electric field and smaller droplets can be produced at high applied voltage. The droplet diameter can be adjusted by the ratio of inner and outer flow velocities as well as the applied electric field. We also demonstrated the proof of concept encapsulation application of our paper device by encapsulating yeast cells under an electric field. Using a simple wax printing method, carbon electrodes can be integrated on the paper. The integrated paper-based microfluidic platform can be fabricated easily and conducted outside of centralized laboratories. This microfluidic system shows great potential in drug and cell investigations by encapsulating cells in resource-limited environments.  相似文献   

8.
近年来,微流控纸芯片由于低成本、便携化、检测快等优点,在需要快速检测的环境分析领域中展现出了巨大的应用前景.该综述从微流控纸芯片在环境分析中的应用角度,总结归纳了微流控纸芯片在环境分析中的最新研究进展,并展望了其在未来的发展趋势与挑战.论文内容引用150余篇源于科学引文索引(SCI)与中文核心期刊中的相关论文.该综述包...  相似文献   

9.
纸基过氯乙烯树脂微流控亚硝酸根离子检测片的研制   总被引:1,自引:0,他引:1  
赵联朝  闫宏涛 《化学学报》2012,70(9):1104-1108
基于滤纸上过氯乙烯树脂栏选择性通过亚硝酸根离子, 结合微流控分析装置设计, 研制成纸基过氯乙烯树脂微流控亚硝酸根离子检测芯片. 采用该微流控亚硝酸根离子检测芯片测定了亚硝酸盐样品, 线性范围和检测限分别为70~1500 μmol/L 和48 μmol/L. 该微流控亚硝酸根离子检测芯片已成功应用于水样和食品中亚硝酸盐测定, 结果满意.  相似文献   

10.
Sutarlie L  Yang KL 《Lab on a chip》2011,11(23):4093-4098
Monitoring spatial distribution of chemicals in microfluidic devices by using traditional sensors is a challenging task. In this paper, we report utilization of a thin layer of cholesteric liquid crystal for monitoring ethanol inside microfluidic channels. This thin layer can be either a polymer dispersed cholesteric liquid crystal (PDCLC) layer or a free cholesteric liquid crystal (CLC) layer separated from the microfluidic device by using a thin film of PDMS. They both show visible colorimetric responses to 4% of ethanol solution inside the microfluidic channels. Moreover, the spatial distribution of ethanol inside the microfluidic channel can be reflected as a color map on the CLC sensing layers. By using this device, we successfully detected ethanol produced from fermentation taking place inside the microfluidic channel. These microfluidic channels with embedded PDCLC or embedded CLC offer a new sensing solution for monitoring volatile organic compounds in microfluidic devices.  相似文献   

11.
In recent years, there has been high interest in paper-based microfluidic sensors or microfluidic paper-based analytical devices (μPADs) towards low-cost, portable, and easy-to-use sensing for chemical and biological targets. μPAD allows spontaneous liquid flow without any external or internal pumping, as well as an innate filtration capability. Although both optical (colorimetric and fluorescent) and electrochemical detection have been demonstrated on μPADs, several limitations still remain, such as the need for additional equipment, vulnerability to ambient lighting perturbation, and inferior sensitivity. Herein, alternative detection methods on μPADs are reviewed to resolve these issues, including relatively well studied distance-based measurements and the newer capillary flow dynamics-based method. Detection principles, assay performance, strengths, and weaknesses are explained for these methods, along with their potential future applications towards point-of-care medical diagnostics and other field-based applications.  相似文献   

12.
A method was developed for the fabrication of microfluidic paper-based analytical devices (μPAD). This method was based on the silanisation of cellulose in filter paper using alkyltrimethoxysilane coupled with UV radiation. The filter paper sheet was hydrophobised by immersion in an octadecyltrimethoxysilane/heptane (OTMS/heptane) solution (0.25 vol. %) containing 5 vol. % of ethyl acetate (EtOAc). The hydrophobic-hydrophilic contrast was generated on the filter paper after the hydrophobised paper sheet was exposed to UV light with a metal mask creating the desired pattern on the sheet. The exposed area was oxidised to create a hydrophilic area, while the hydrophobic area was protected by the metal mask. The optimal conditions for the fabrication of μPAD were studied; these included ethyl acetate concentration (CEtOAc), immersion time, octadecyltrimethoxysilane concentration (COTMS) and exposure time. This method is cost-effective and simple. In addition, different functional groups could be further grafted for various assay purposes. To demonstrate the feasibility of the μPAD in analytical applications, a flower-shaped μPAD with eight channels and eight detection units was fabricated and used to determine the nitrite content in pickled vegetables. The nitrite content (124 µg g?1) in the sample determined by this method compared favourably with that measured using a standard method (137 µg g?1).  相似文献   

13.
N Godino  R Gorkin  K Bourke  J Ducrée 《Lab on a chip》2012,12(18):3281-3284
We present a novel, low-resource fabrication and assembly method for creating disposable amperometric detectors in hybrid paper-polymer devices. Currently, mere paper-based microfluidics is far from being able to achieve the same level of process control and integration as state-of-the-art microfluidic devices made of polymers. To overcome this limitation, in this work both substrate types are synergistically combined through a hybrid, multi-component/multi-material system assembly. Using established inkjet wax printing, we transform the paper into a profoundly hydrophobic substrate in order to create carbon electrodes which are simply patterned from carbon inks via custom made adhesive stencils. By virtue of the compressibility of the paper substrate, the resulting electrode-on-paper hybrids can be directly embedded in conventional, 3D polymeric devices by bonding through an adhesive layer. This manufacturing scheme can be easily recreated with readily available off-the-shelf equipment, and is extremely cost-efficient and rapid with turn-around times of only a few hours.  相似文献   

14.
As an analytical support, paper, being low cost, highly abundant, of high porosity, disposable or biodegradable, and easy to use, store, transport, and print, has excellent chemical compatibility with many applications. Since the first microfluidic paper-based analytical device (μ-PAD or lab-on-paper) was proposed, the paper-based assay has never attracted as much attention as it does now. There has recently been rapidly increasing interest in using sensitive luminescence methods, for example chemiluminescence (CL) and electrogenerated chemiluminescence (ECL), as the detection strategy for lab-on-paper devices. Because of their intrinsic characteristics, CL and ECL provide outstanding performance while retaining the simplicity, low cost, multifunctionality, versatility, flexibility, and disposability of μ-PADs. The objective of this review is to cover the development of lab-on-paper-based devices using CL and ECL detection, including fabrication of paper devices, construction of sensing interfaces, signal amplification strategies, external instruments used, and applications. We believe that lab-on-paper devices with CL and ECL detection methods will meet the diverse requirements of point-of-care diagnosis.  相似文献   

15.
This paper presents a simple and low-cost method for patterning poly(dimethylsiloxane) (PDMS) barriers in porous support such as paper for the construction of flexible microfluidic paper-based analytical devices (μPADs). The fabrication method consisted of contact-printing a solution of PDMS and hexane (10:1.5 w/w) onto chromatographic paper using custom-designed rubber stamps containing the patterns of μPADs. After penetrating the paper (∼30 s), the PDMS is cured to form hydrophobic barriers. Under optimized conditions, hydrophobic barriers and hydrophilic channels with dimensions down to 949 ± 88 μm and 771 ± 90 μm (n = 5), respectively, were obtained. This resolution is well-suitable for most applications in analytical chemistry. Chemical compatibility studies revealed that the PDMS barriers were able to contain some organic solvents, including acetonitrile and methanol, and aqueous solutions of some surfactants. This find is particularly interesting given that acetonitrile and methanol are the most used solvents in chromatographic separations, non-aqueous capillary electrophoresis and electroanalysis, as well as aqueous solutions of surfactants are suitable mediums for cell lyses assays. The utility of the technique was evaluated in the fabrication of paper-based electrochemical devices (PEDs) with pencil-drawn electrodes for experiments in static cyclic voltammetry and flow injection analysis (FIA) with amperometric detection, in both aqueous and organic mediums.  相似文献   

16.
Recent research on microfluidic paper-based analytical devices (μPADs) has shown that paper has great potential for the fabrication of low-cost diagnostic devices for healthcare and environmental monitoring applications. Herein, electrochemiluminescence (ECL) was introduced for the first time into μPADs that were based on screen-printed paper-electrodes. To further perform high-specificity, high-performance, and high-sensitivity ECL on μPADs for point-of-care testing (POCT), ECL immunoassay capabilities were introduced into a wax-patterned 3D paper-based ECL device, which was characterized by SEM, contact-angle measurement, and electrochemical impedance spectroscopy. With the aid of a home-made device-holder, the ECL reaction was triggered at room temperature. By using a typical tris(bipyridine)ruthenium-tri-n-propylamine ECL system, this paper-based ECL 3D immunodevice was applied to the diagnosis of carcinoembryonic antigens in real clinical serum samples. This contribution further expands the number of sensitive and specific detection modes of μPADs.  相似文献   

17.
Paper-based analytical devices have become lately “must have” components in equipment and instrumental designed for point-of-care applications, especially when they are used in tandem with microfluidic platforms. Nowadays, paper-based electrochemical devices (PEDs) represent the first choice in the development of lab-on-a-chip biosensors because of their benefits in biomedical diagnosis in terms of simplicity, affordability, portability, and disposability. Moreover, cellulose is a biodegradable and biocompatible substrate, ideal for building disposable devices for use in remote locations or low-resource settings. Despite their low costs and simplicity, PEDs must face a tough challenge—meeting the affordable, sensitive, specific, user-friendly, rapid and robust, equipment-free, and deliverable to end users criteria. The latest achievements in microfluidic PEDs for clinical diagnosis will be critically discussed, putting emphasis on innovative assay formats and methods for surface modification.  相似文献   

18.
Rapid well-controlled intracellular delivery of drug compounds, RNA, or DNA into a cell--without permanent damage to the cell--is a pervasive challenge in basic cell biology research, drug discovery, and gene delivery. To address this challenge, we have developed a bench-top system comprised of a control interface, that mates to disposable 96-well-formatted microfluidic devices, enabling the individual manipulation, electroporation and real-time monitoring of each cell in suspension. This is the first demonstrated real-time feedback-controlled electroporation of an array of single-cells. Our computer program automatically detects electroporation events and subsequently releases the electric field, precluding continued field-induced damage of the cell, to allow for membrane resealing. Using this novel set-up, we demonstrate the reliable electroporation of an array (n = 15) of individual cells in suspension, using low applied electric fields (<1 V) and the rapid and localized intracellular delivery of otherwise impermeable compounds (Calcein and Orange Green Dextran). Such multiplexed electrical and optical measurements as a function of time are not attainable with typical electroporation setups. This system, which mounts on an inverted microscope, obviates many issues typically associated with prototypical microfluidic chip setups and, more importantly, offers well-controlled and reproducible parallel pressure and electrical application to individual cells for repeatability.  相似文献   

19.
A current problem in microfluidics is that poly(dimethylsiloxane) (PDMS), used to fabricate many microfluidic devices, is not compatible with most organic solvents. Fluorinated compounds are more chemically robust than PDMS but, historically, it has been nearly impossible to construct valves out of them by multilayer soft lithography (MSL) due to the difficulty of bonding layers made of "non-stick" fluoropolymers necessary to create traditional microfluidic valves. With our new three-dimensional (3D) valve design we can fabricate microfluidic devices from fluorinated compounds in a single monolithic layer that is resistant to most organic solvents with minimal swelling. This paper describes the design and development of 3D microfluidic valves by molding of a perfluoropolyether, termed Sifel, onto printed wax molds. The fabrication of Sifel-based microfluidic devices using this technique has great potential in chemical synthesis and analysis.  相似文献   

20.
Recently, chemical operations with microfluidic devices, especially droplet-based operations, have attracted considerable attention because they can provide an isolated small-volume reaction field. However, analysis of these operations has been limited mostly to aqueous-phase reactions in water droplets due to device material restrictions. In this study, we have successfully demonstrated droplet formation of five common organic solvents frequently used in chemical synthesis by using a simple silicon/glass-based microfluidic device. When an immiscible liquid with surfactant was used as the continuous phase, the organic solvent formed droplets similar to water-in-oil droplets in the device. In contrast to conventional microfluidic devices composed of resins, which are susceptible to swelling in organic solvents, the developed microfluidic device did not undergo swelling owing to the high chemical resistance of the constituent materials. Therefore, the device has potential applications for various chemical reactions involving organic solvents. Furthermore, this droplet generation device enabled control of droplet size by adjusting the liquid flow rate. The droplet generation method proposed in this work will contribute to the study of organic reactions in microdroplets and will be useful for evaluating scaling effects in various chemical reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号