首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Naphthylacetic acid, naphthyloxy acetic acid and naphthylacetamide belong to a group of synthetic substances known as “auxin-like” compounds which are used as growth regulators in vegetables and fruits due to their structure similarities with the indoleacetic acid, the most important plant auxin. This paper reports a selective, sensitive and fast ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC–MS/MS) method for the determination of naphthylacetamide (NAD) and the isomers (α and β) of naphthylacetic acid (NAA) and naphthyloxy acetic (NOA) acid in apple samples. A baseline separation between the respective isomers was achieved using an RP-Amide column with gradient elution. The UHPLC-MS/MS method developed, using electrospray and selected reaction monitoring (SRM) acquisition mode led to a reliable determination of these family of compounds in apple samples at low quantitation levels, down to 1.0 μg kg−1 and 0.25 μg kg−1 respectively. For confirmation of NAA accurate mass measurement is proposed giving at these conditions quantitation limits of 10 μg kg−1 for this compound. The UHPLC-MS/MS method developed was used for the analysis of apple samples harvested in three different apple fields from Lleida (Spain) during the blooming period. NAD and NAA were found in samples collected during 4–5 weeks after application at concentrations between the quantification limits and 43 μg kg−1 and 24 μg kg−1, respectively.  相似文献   

2.
Due to the different physico-chemical properties of phenols, the development of a methodology for the simultaneous extraction and determination of phenolic compounds belonging to several families, such as chlorophenols (CPs), alkylphenols (APs), nitrophenols (NTPs) and cresols is difficult. This study shows the development and validation of a method for the analysis of 13 phenolic compounds (including CPs, APs, NTPs and cresols) in agricultural soils. For this purpose, a quick, easy, cheap, effective, rugged and safe (QuEChERS)-based procedure was developed, validated and applied to the analysis of real samples. A derivatization step prior to the final determination by gas chromatography (GC) coupled to a triple quadrupole analyzer operating in tandem mass spectrometry (QqQ-MS/MS) was performed by using acetic acid anhydride (AAA) and pyridine (Py). The optimized procedure was validated, obtaining average extraction recoveries in the range 69–103% (10 μg kg−1), 65–98% (50 μg kg−1), 76–112% (100 μg kg−1) and 76–112% (300 μg kg−1), with precision values (expressed as relative standard deviation, RSD) ≤ 22% (except for 4-chlorophenol) involving intra-day and inter-day studies. Furthermore, 15 real soil samples were analyzed by the proposed method in order to assess its applicability. Some phenolic compounds (e.g. 2,4,6-trichlorophenol or 4-tert-octylphenol) were found in the samples at trace levels (<10 μg kg−1).  相似文献   

3.
We present a fast liquid chromatography–tandem mass spectrometry (LC–MS/MS) method for the analysis of the coccidiostat amprolium in food samples. Tandem mass spectrometry in a triple quadrupole was used for quantitative purposes, and the information from multiple-stage mass spectrometry in an ion-trap mass analyzer contributed to fragmentation studies. Hydrophilic interaction liquid chromatography (HILIC) in a Fused-Core™ column using isocratic elution (acetonitrile:formic acid/ammonium formate buffer pH 4, 50 mM (60:40)) successfully analyzed this compound in less than 3 min. The HILIC system was coupled to heated electrospray-MS/MS using highly selective-selected reaction monitoring (H-SRM) to improve sensitivity and selectivity for the analysis of amprolium, after a simple sample treatment based on an “extract and shoot” strategy. Accurate mass measurements were performed to identify the interfering compound responsible for causing matrix ion enhancement in the signal of amprolium. The addition of l-carnitine (the interfering compound) (1 μg L−1) to standards and sample extracts allowed the use of the external calibration method for quantitative purposes. The LC–MS/MS (H-SRM) method showed good precision (relative standard deviation, RSD, lower than 13%), accuracy and linearity and allowed the determination of amprolium down to the ppb level (LODs between 0.1 and 0.6 μg kg−1).  相似文献   

4.
An improved LC-MS/MS method for the determination of semicarbazide in whole egg is described. Waters OASIS-MCX cation exchange purification cartridges increased the sensitivity for analysis by LC-MS/MS. The validation study was carried out according to criteria and requirements of Commission Decision 2002/657/EC for confirmatory analysis and provided the data as follows: The correlation coefficient for the matrix calibration curve, in the range of 0–5 μg kg−1, was r = 0.9968. The detection capability and decision limit, measured according to ISO11843-2, were CCα = 0.20 μg kg−1 and CCβ = 0.25 μg kg−1. Repeatability (CVSr) and within-laboratory reproducibility (CVSwr) determined for the concentration levels of 0.2, 0.5 and 1.0 μg kg−1 SEM ranged from 11.9 to 5.7% and 11.8 to 6.3%, respectively. The validated method was applied to investigate SEM stability in incurred materials (egg homogenates) during long-term storage at −20 °C and 4 °C. The study proved by a two-sampling test that SEM at levels of 17. 7, 1.2, 10.6 and 0.47 μg kg−1 was stable for up to 12 months.  相似文献   

5.
This paper reports a comprehensive sensitive multi-residue liquid chromatography–tandem mass spectrometry (LC–MS/MS) method for detection, identification and quantitation of 73 pesticides and their related products, a total of 98 analytes, belonging to organophosphorus pesticides (OPPs) and carbamates, in foods. The proposed method makes use of a modified QuEChERS (quick, easy, cheap, effective, rigged, and safe) procedure that combines isolation of the pesticides and sample clean-up in a single step. Analysis is performed by liquid chromatography-electrospray ionization–tandem mass spectrometry operated in the multiple reaction monitoring (MRM) mode, acquiring two specific precursor-product ion transitions per target compound. Two main fragment ions for each pesticide were obtained to achieve the identification according to the SANCO guidelines 10684/2009. The method was validated with various food samples, including edible oil, meat, egg, cheese, chocolate, coffee, rice, tree nuts, citric fruits, vegetables, etc. No significant matrix effect was observed for tested pesticides, therefore, matrix-matched calibration was not necessary. Calibration curves were linear and covered from 1 to 20 μg L−1 for all compounds studied. The average recoveries, measured at 10 μg kg−1, were in the range 70–120% for all of the compounds tested with relative standard deviations below 20%, while a value of 10 μg kg−1 has been established as the method limit of quantitation (MLOQ) for all target analytes. Similar trueness and precision results were also obtained for spiking at 200 μg kg−1. Expanded uncertainty values were in the range 21–27% while the HorRat ratios were below 1. The method has been successfully applied to the analysis of 700 food samples in the course of a baseline monitoring study of OPPs and carbamates.  相似文献   

6.
《Analytica chimica acta》2004,515(1):55-63
Clenbuterol has been extracted by mixed solid-phase extraction from two biological matrices (bovine hair and urine) and detected by GC/MS (selected ion monitoring (SIM) and full-SCAN modes). The analytical signal has been modelled with univariate and three-way models, namely DTLD, PARAFAC, PARAFAC2, Tucker3 and trilinear PLS. Since clenbuterol is a banned substance a comparative study of the capability of detection (CCβ, X0=0) has been performed as a function of the sample (hair, 74 μg kg−1 and urine, 0.36 μg l−1), the mode in which the signals are monitored (SCAN, 283 μg kg−1 and SIM, 74 μg kg−1) and the statistical model (univariate, 283 μg kg−1 and trilinear PLS, 20.91 μg kg−1). The capability of detection has been calculated as stated in ISO 11843 and Decision 2002/657/EC setting in all cases the probabilities of false positive and of false negative at 0.05.The identification of the mass spectra must be done to confirm the presence of clenbuterol and has been carried out through PARAFAC. The correlation coefficient between the spectra estimated by PARAFAC and the library spectra is 0.96 (hair, SCAN mode) and 1.00 (hair and urine, SIM mode).The Decision 2002/657/EC advocates the use of independent mass fragments to identify banned compounds. These recommendations together with the effect of the number of ions registered on the capability of detection have lead us to select five uncorrelated fragments (86, 243, 262, 264 and 277) from the data set of 210 ions by hierarchical clustering of variables.  相似文献   

7.
A method was developed for simultaneous determination of residues of 17 sex hormones in egg products. Target compounds were extracted from samples with methanol in an ultrasonic bath, effectively separated from lipids in the extracts by ZnCl2 depositing filtration and purified using a C18 solid-phase extraction (SPE) and followed by NH2 SPE cartridge. The analytes were quantified by liquid chromatography using a BEH C18 column coupled to an electrospray ionization tandem mass spectrometer (LC-ESI-MS/MS) operating in negative mode for estrogens and in positive multiple reaction monitoring mode for androgens. The parameters of the mass spectrometer and the composition of mobile phase and additives were also optimized to enhance detection sensitivity. Average recoveries of the target compounds varied from 70.0% to 121.0% with relative standard deviations ranging from 2.3% to 11.2% at two fortification levels. The limits of detection (LOD) of the method were from 0.002 μg kg−1 to 0.23 μg kg−1 and the limits of quantification (LOQ) were in the range of 0.007-0.76 μg kg−1.  相似文献   

8.
Phthalates (PAEs) are ubiquitous toxic chemical compounds. During the last few years, some phthalate metabolites (MPAEs) have been proposed as appropriate biomarkers in human urine samples to determine PAE human intake and exposure. So, it is necessary to have fast, easy, robust and validated analytical methods to determine selected MPAEs in urine human samples. Two different instrumental methods based on gas (GC) and ultra-high performance liquid (UHPLC) chromatography coupled to mass spectrometry (MS) have been optimized, characterized and validated for the simultaneous determination of nine primary and secondary phthalate metabolites in urine samples. Both instrumental methods have similar sensitivity (detection limits ranged from 0.03 to 8.89 pg μL−1 and from 0.06 to 0.49 pg μL−1 in GC–MS and UHPLC–MS2, respectively), precision (repeatability, expressed as relative standard deviation, which was lower than 8.4% in both systems, except for 5OH-MEHP in the case of GC–MS) and accuracy. But some advantages of the UHPLC–MS2 method, such as more selectivity and lower time in the chromatographic runs (6.8 min vs. 28.5 min), have caused the UHPLC–MS2 method to be chosen to analyze the twenty one human urine samples from the general Spanish population. Regarding these samples, MEP showed the highest median concentration (68.6 μg L−1), followed by MiBP (23.3 μg L−1), 5cx-MEPP (22.5 μg L−1) and MBP (19.3 μg L−1). MMP (6.99 μg L−1), 5oxo-MEHP (6.15 μg L−1), 5OH-MEHP (5.30 μg L−1) and MEHP (4.40 μg L−1) showed intermediate levels. Finally, the lowest levels were found for MBzP (2.55 μg L−1). These data are within the same order of magnitude as those found in other similar populations.  相似文献   

9.
A rapid confirmatory method has been developed and validated for the simultaneous identification, confirmation and quantitation of 11 nitroimidazoles in eggs by liquid chromatography tandem mass spectrometry (LC–MS/MS). The method is validated in accordance with Commission Decision 2002/657/EC and is capable of analysing metronidazole (MNZ), dimetridazole (DMZ), ronidazole (RNZ), ipronidazole (IPZ) and their hydroxy metabolites MNZ-OH, HMMNI (hydroxymethyl, methyl nitroimidazole), IPZ-OH. The method is also capable of analysing carnidazole (CRZ), ornidazole (ORZ), tinidazole (TNZ) and ternidazole (TRZ). MNZ, DMZ and RNZ have been assigned a recommended level (RL) of 3 μg kg−1 by the Community Reference Laboratory (CRL) in Berlin. The developed method described in this study is easily able to detect all the nitroimidazole compounds investigated at this level and below. Egg samples are extracted with acetonitrile, and NaCl is added to help remove matrix contaminants. The acetonitrile extract undergoes a liquid–liquid wash step with hexane; it is then evaporated and reconstituted in mobile phase. The reconstituted samples are analysed by liquid chromatography tandem mass spectrometry (LC–MS/MS). The decision limits (CCα) range from 0.33 to 1.26 μg kg−1 and the detection capabilities (CCβ), range from 0.56 to 2.15 μg kg−1. The results of the inter-assay study, which was performed by fortifying hen egg samples (n = 18) on three separate days, show the accuracy calculated for the various analytes to range between 87.2 and 106.2%. The precision of the method, expressed as %CV values for the inter-assay variation of each analyte at the three levels of fortification (3, 4.5 and 6.0 μg kg−1), ranged between 3.7 and 11.3%. A Day 4 analysis was carried out to examine species variances in eggs from different birds such as duck and quail and investigating differences in various battery and free range hen eggs.  相似文献   

10.
Shen CY  Cao XW  Shen WJ  Jiang Y  Zhao ZY  Wu B  Yu KY  Liu H  Lian HZ 《Talanta》2011,84(1):141-147
An analytical method with the technique of QuEChERS (quick, easy, cheap, effective, rugged and safe) and gas chromatography (GC)/mass spectrometry (MS) in negative chemical ionization (NCI) has been developed for the determination of 17 pyrethroid pesticide residues in troublesome matrices, including garlic, onion, spring onion and chili. Pyrethroid residues were extracted with acidified acetonitrile saturated by hexane. After a modified QuEChERS clean-up step, the extract was analyzed by GC-NCI/MS in selected ion monitoring (SIM) mode. An isotope internal standard of trans-cypermethrin-D6 was employed for quantitation. Chromatograms of pyrethroids obtained in all these matrices were relatively clean and without obvious interference. The limits of detection (LODs) ranged from 0.02 to 6 μg kg−1 and recovery yields were from 54.0% to 129.8% at three spiked levels (20, 40 and 60 μg kg−1 for chili, and 10, 20 and 30 μg kg−1 for others) in four different matrices depending on the compounds determined. The relative standard deviations (RSDs) were all below 14%. Isomerization enhancement of pyrethroids in chili extract was observed and preliminarily explained, especially for acrinathrin and deltamethrin.  相似文献   

11.
An analytical methodology has been developed for the simultaneous extraction of 13 phenolic compounds, including chlorophenols (CPs), nitrophenols (NTPs), cresols and alkylphenols (APs) in different types of wastewater (WW) effluents. A solid-phase extraction (SPE) method has been optimized prior to the determination by gas chromatography coupled to triple quadrupole tandem mass spectrometry (GC-QqQ-MS/MS). Due to the complexity of the matrix, a comparison study of matrix-matched-calibration (MMC) and standard addition calibration (SAC) was carried out for quantification purposes. The optimized procedure was validated using the SAC approach since it provided the most adequate quantification results (in terms of recovery and precision values). Recoveries were in the range 60-135% (0.5 μg L−1), 70-115% (1 μg L−1), and 78-120% (5 μg L−1), with precision values (expressed as relative standard deviation, RSD) ≤30% (except for 2-nitrophenol) involving intra-day and inter-day precision studies. Limits of detection (LODs) and quantification (LOQs) were also evaluated, and LOQs ranged from 0.03 μg L−1 to 2.5 μg L−1. The proposed method was applied to the analysis of 8 real WW effluent samples, finding some phenolic compounds (e.g. 2-chlorophenol, 2,4,6-trichlorophenol and 4-tert-octylphenol) at concentrations higher than the established LOQs.  相似文献   

12.
Thyreostatic drugs, illegally administrated to livestock for fattening purposes, are banned in the European Union since 1981 (Council Directive 81/602/EC). For monitoring their illegal use, sensitive and specific analytical methods are required. In this study an UHPLC-MS/MS method was described for quantitative analysis of eight thyreostatic drugs in urine, this without a derivatisation step. The sample pretreatment involved a reduction step with dithiothreitol under denaturating conditions at 65 °C, followed by liquid-liquid extraction with ethyl acetate. This analytical procedure was subsequently validated according to the EU criteria (2002/657/EC Decision), resulting in decision limits and detection capabilities ranging between 1.1 and 5.5 μg L−1 and 1.7 and 7.5 μg L−1, respectively. The method obtained for all, xenobiotic thyreostats, a precision (relative standard deviation) lower than 15.5%, and the linearity ranged between 0.982 and 0.999. The performance characteristics fulfill not only the requirements of the EU regarding the provisional minimum required performance limit (100 μg L−1), but also the recommended concentration fixed at 10 μg L−1 in urine set by the Community of Reference Laboratories. Future experiments applying this method should provide the answer to the alleged endogenous status of thiouracil.  相似文献   

13.
Supramolecular solvents are here proposed firstly as extractants in solid sample microextractions. The approach was evaluated by extracting flumequine (FLU) and oxolinic acid (OXO), two widely used veterinary medicines, from fish and shellfish muscle using a supramolecular solvent made up of decanoic acid (DeA) reverse micelles. The antibiotics were extracted in a single step (∼15 min), at room temperature, using 400 μL of solvent. After centrifugation, an aliquot of the extract was directly analyzed by liquid chromatography and fluorescence, without the need of clean-up or solvent evaporation. Contrary to the previously reported methods, both OXO and FLU were quantitatively extracted from fish and shellfish, independently of sample composition. The high extraction efficiencies observed for these antibiotics were a consequence of their amphiphilic character which resulted in the formation of DeA-OXO and DeA-FLU mixed aggregates. The quality parameters of this quantitative method including sensitivity, linearity, selectivity, repeatability, trueness, ruggedness, stability, decision limit and detection capability were evaluated according to the 2002/657/EC Commission Decision. Quantitation limits in the different samples analyzed (salmon, sea trout, sea bass, gilt-head bream, megrim and prawns) ranged between 6.5 and 22 μg kg−1 for OXO and, 5 and 15 μg kg−1 for FLU. These limits were far below the current maximum residue limits (MRLs) set by the European Union (EU) (i.e. 100 and 600 μg kg−1, for OXO and FLU, respectively). The trueness of the method was determined by analyzing a Certified Reference Material (CMR, BCR®-725) consisting of a lyophilised salmon tissue material. Recoveries for fortified samples (50–100 μg kg−1 of OXO and 50–600 μg kg−1 of FLU) and their relative standard deviations were in the intervals 99–102% and 0.2–5%, respectively. The repeatability, expressed as relative standard deviation, was 3.6% for OXO and 2.3% for FLU ([OXO] = [FLU] = 200 μg kg−1 and n = 11).  相似文献   

14.
This paper describes the development and validation of an analytical methodology to determine eight perfluorinated compounds (PFCs) in edible fish using pressurized liquid extraction (PLE) with water and solid-phase extraction (SPE) with an ion-exchanger as extraction and pre-concentration procedures, followed by liquid chromatography–quadrupole-linear ion trap mass spectrometry (LC–QqLIT–MS). The rapidity and effectiveness of the proposed extraction procedure were compared with those most commonly used to isolate PFCs from fish (ion-pairing and alkaline digestion). The average recoveries of the different fish samples, spiked with the eight PFCs at three levels (the LOQ, 10 and 100 μg kg−1 of each PFC), were always higher than 85% with relative standard deviation (RSD) lower than 17%. A good linearity was established for the eight PFCs in the range from 0.003–0.05 to 100 μg kg−1, with r > 0.9994. The limits of quantification (LOQs) were between 0.003 and 0.05 μg kg−1, which are well below those previously reported for this type of samples. Compared with previous methods, sample preparation time and/or LOQs are reduced. The method demonstrated its successful application for the analysis of different parts of several fish species. Most of the samples tested positive, mainly for perfluoropentanoic acid (PFPA), perfluorobutane sulfonate (PFBS) and perfluorooctanoic acid (PFOA) but other of the eight studied PFCs were also present.  相似文献   

15.
A simple, fast, sensitive and robust analytical method using gas chromatography (GC)-isotope dilution mass spectrometry (MS) was developed and validated for the identification and quantification of 1,4-dichlorobenzene (p-DCB) residues in honey samples. The proposed methodology is based on steam-distillation using a Clevenger-type apparatus followed by gas chromatography-mass spectrometry (GC-MS) in the selected ion monitoring (SIM) mode employing the isotopically labeled analogue d4-1,4-dichlorobenzene (d4-p-DCB) as internal standard (IS). Validation of the method was performed in two different GC-MS systems, using quadrupole MS (QMS) and ion-trap MS (ITMS) detectors, with no statistically significant differences between two. Recoveries were better than 91% with percent relative standard deviations lower than 12%. The instrumental limits of detection were 1 μg kg−1 in the GC-ITMS system and 0.6 μg kg−1 in the GC-QMS system. The expanded uncertainty was estimated as 17% at the currently accepted “action level” of 10 μg kg−1. The method was applied to the analysis of 310 honey samples in an extensive national monitoring study. A quality control (QC) system applied during the assays has demonstrated a good performance and long-term stability over a period of more than 8 months of continuous operation.  相似文献   

16.
In the present study we report on the optimization and validation of a sensitive high performance liquid chromatography atmospheric pressure chemical ionization mass spectrometry (HPLC–APCI–MS) method for the determination of 8 bioactive amines (histamine, tyramine, tryptamine, 2-phenylethylamine, cadaverine, putrescine, spermidine and spermine) in donkey milk samples. The method involves donkey milk pre-treatment to remove proteins and pre-column dansylation of the amines. HPLC in reversed phase mode has been used for bioactive amines separation and the operating condition of the APCI–MS system proved to be powerful and very efficient for peak assignment. The separation was accomplished in a short time with an excellent resolution for all the amine peaks. Quantification was carried out by monitoring the characteristic [M+H]+ ion of each amine derivative. The method sensitivity, linearity and repeatability were assayed with satisfactory results. The detection limits of the analysed amines ranged from 0.5 μg L−1 to 15 μg L−1; the highest LOD was for spermine. Also remarkably good recovery values were obtained; at the lowest spiking level (1 μg L−1) the percent mean recoveries ranged from 77.7 to 109.7. Furthermore, as the investigations relate to a complex matrix as donkey milk, suitable studies on matrix effect were performed. Finally, the developed and validated method was applied to analyse 13 donkey milk samples. Among the identified bioactive amines, putrescine, spermine and spermidine proved to be the main amines in donkey milk. Their concentration levels in the present study were lower than the values determined in mature human, cow and sow milk.  相似文献   

17.
In this work, a straightforward, reliable and effective automated method has been developed for the direct determination of monoaromatic volatile BTEXS group (namely benzene, toluene, ethylbenzene, o-, m- and p-xylenes, and styrene) in olives and olive oil, based on headspace technique. Separation, identification and quantitation were carried out by headspace-gas chromatography-mass spectrometry (HS-GC-MS) in selected ion monitoring (SIM) mode. Sample pretreatment or clean-up were not necessary (besides olives milling) because the olives and olive oil samples are put directly into an HS vial, automatically processed by HS and then injected in the GC-MS for chromatographic analysis. The chemical and instrumental variables were optimized using spiked olives and olive oil samples at 50 μg kg−1 of each targeted species. The method was validated to ensure the quality of the results. The precision was satisfactory with relative standard deviations (RSD (%)) in the range 1.6-5.2% and 10.3-14.2% for olive oil and olives, respectively. Limits of detection were in the range 0.1-7.4 and 0.4-4.4 μg kg−1 for olive oil and olives, respectively. Finally, the proposed method was applied to the analysis of real olives and olive oil samples, finding positives of the studied compounds, with overall BTEXS concentration levels in the range 23-332 μg kg−1 and 4.2-87 μg kg−1 for olive oil and olives, respectively.  相似文献   

18.
Quantitation of trace levels of domoic acid (DA) in seawater samples usually requires labour-intensive protocols involving chemical derivatization with 9-fluorenylmethylchloroformate and liquid chromatography with fluorescence detection (FMOC–LC–FLD). Procedures based on LC–MS have been published, but time-consuming and costly solid-phase extraction pre-concentration steps are required to achieve suitable detection limits. This paper describes an alternative, simple and inexpensive LC method with ultraviolet detection (LC–UVD) for the routine analysis of trace levels of DA in seawater without the use of sample pre-concentration or derivatization steps. Qualitative confirmation of DA identity in dubious samples can be achieved by mass spectrometry (LC–MS) using the same chromatographic conditions. Addition of an ion-pairing/acidifying agent (0.15% trifluoroacetic acid) to sample extracts and the use of a gradient elution permitted the direct analysis of large sample volumes (100 μl), resulting in both high selectivity and sensitivity (limit of detection = 42 pg ml−1 by LC–UVD and 15 pg ml−1 by LC–MS). Same-day precision varied between 0.4 and 5%, depending on the detection method and DA concentration. Mean recoveries of spiked DA in seawater by LC–UVD were 98.8% at 0.1–10 ng ml−1 and 99.8% at 50–1000 ng ml−1. LC–UVD exhibited strong correlation with FMOC–LC–FLD during inter-laboratory analysis of Pseudo-nitzschia multiseries cultures containing 60–2000 ng DA ml−1 (r2 > 0.99), but more variable results were obtained by LC–MS (r2 = 0.85). This new technique was used to confirm the presence of trace DA levels in low-toxicity Pseudo-nitzschia spp. isolates (0.2–1.6 ng ml−1) and in whole-water field samples (0.3–5.8 ng ml−1), even in the absence of detectable Pseudo-nitzschia spp. cells in the water column.  相似文献   

19.
As a suitable way for routine screening of pesticides and control of other organic contaminants in water, the combination of liquid chromatography triple quadrupole tandem mass spectrometry (LC–QqQ-MS/MS) and liquid chromatography–hybrid quadrupole time-of-flight mass spectrometry (LC–QTOF-MS) has been applied to the analysis of 63 surface and waste water samples after conventional solid-phase extraction (SPE). The extracts were screened for 43 pesticides or degradation products by LC–QqQ-MS/MS achieving limits of detection (LOD) ranged from 0.04 to 2 ng L−1. Of the 43 selected pesticides, 33 were detected in water samples. The ESI–QTOF MS instrument was run using two simultaneous acquisition functions with low and high collision energy (MSE approach) and acquiring the full mass spectra. A home-made database containing more than 1100 organic pollutants was used for substance identification. Around 250 of these compounds were available at the laboratory as reference standards. Five pesticides and 3 of their degradation products, different to those selected in the QqQ method, were detected by QqTOF-MS. Thirteen pharmaceuticals and two drugs of abuse were also identified in the samples. In practice, the sample preparation proved to be suitable for both techniques and for a wide variety of substances with different polarity. Mutual confirmation and evidence of co-occurrence of several other organic contaminants were the main advantages of the combination of both techniques.  相似文献   

20.
Streptomycin (STR) and dihydrostreptomycin (DHSTR) are two of the most common aminoglycoside antibiotics used in veterinary medicine. The physicochemical properties of both substances, make their determination challenging. In the present study the development of methods based on ion-pair chromatography (IPC) and on hydrophilic interaction chromatography (HILIC), for the determination of the above mentioned aminoglycosides in the range of 100–1000 μg L−1 is described. The two methods were validated according to EU requirements for residues in food. The recoveries for the IPC method were 69.3% and 56.5% of STR and DHSTR, respectively, and for HILIC method 85.5% and 72.3%, respectively. The intra- and inter-day precision, studied at 100, 200 and 300 μg kg−1 levels in milk samples, gave %RSD ≤ 13 for both methods. LOQs for the HILIC method were 14 μg kg−1 for both analytes and for the IPC method were 109 and 31 μg kg−1, for STR and DHSTR, respectively. The sensitivity of the HILIC method is 80 and 210 times greater than that of the ICP method, for STR and DHSTR, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号