首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Apurinic/apyrimidinic endonuclease 1 (APE-1), a kind of multifunctional protein widely-distributed in the body, plays an essential role in the DNA base excision repair and serves as multiple possible roles in the response of human cancer to radiotherapy and chemotherapy. In this work, an ultrasensitive solid-state electrochemiluminescence (ECL) immunosensor is designed to determine APE-1 based on the new Ru(bpy)32+/bi-arginine system. The bi-arginine (bi-Arg) is decorated on the Au nanoparticles functionalized magnetic Fe3O4/reduced graphene oxide (bi-Arg/Au@Fe3O4–rGO) according to the self-assembling and covalent cross-linking interaction to obtain the functionalized nanocomposite of bi-Arg/Au@Fe3O4–rGO. Herein, the bi-Arg/Au@Fe3O4–rGO plays not only an amplification label to enhance the ECL signal of Ru(bpy)32+ due to the coreactant of bi-Arg but also an ideal nanocarrier to load numerous secondary antibody. Based on sandwich-type immunoassay format, this proposed method offers a linear range of 1.0 fg mL−1–5.0 pg mL−1 and an estimated detection limit of 0.3 fg mL−1 for the APE-1. Moreover, the reagentless ECL immunosensor also exhibits high sensitivity, excellent selectivity and good stability, which has greatly potential development and application in clinical diagnostics, immunology and biomedical research.  相似文献   

2.
In this report, a non-toxic method was proposed for the simple synthesis of palladium nanoparticles (Pd)/Fe3O4@C peroxidase mimetics by virtue of in situ growth of Pd nanoparticles on Fe3O4@C magnetic nanoparticles. And a microfluidic paper-based multiplex colorimetric immunodevice (named α-sheet) was developed by site-selectively immobilizing multiple antigens owing to its intrinsic high-efficiency catalytic activity of peroxidase mimetics to multiple chromogenic reactions. The immunosensor platform was prepared by growing a layer of flower-like gold nanoparticles which could entrap the primary antibodies onto paper sensing zones, and the as-prepared Pd/Fe3O4@C peroxidase mimetics was used to label secondary antibodies. In the presence of 3,3′,5,5′-tetramethylbenzidine and o-phenylenediamine chromogenic substrates, Pd/Fe3O4@C peroxidase mimetics catalyzed chromogenic reactions and showed different colors with respective intensity. To precisely identify the intensity, a piece of black wax printed chromatographic paper with three observing windows (named β-sheet) was flatted on α-sheet. Under the optimal condition, the proposed multiplex colorimetric immunodevice displayed wide linear ranges from 0.005 to 30 ng mL−1 with low detection limits of 1.7 pg mL−1 for carcinoembryonic antigen (CEA) and α-fetoprotein (α-AFP). Meanwhile, the proposed method provided provided a non-toxic, low-cost and promising tool for point-of-care diagnosis.  相似文献   

3.
We report on a disposable microdevice suitable for sandwich-type electrochemiluminescence (ECL) detection of prostate specific antigen (PSA). The method is making use of ZnO quantum dots dotted carbon nanotube (ZnO@CNT) and simply electrochemical reduced Pt/Au alloy. The latter was selected as immunosensing probe to modify screen-printed carbon electrode, due to its excellent electrical property. For further ultrasensitive, low-potential and stable ECL detection, ZnO@CNT composite was first synthesized using a facile solvothermal method, and employed as signal amplification label. In this work, two working electrodes in one device were used for one determination to obtain more exact results based on screen-print technique. Taking advantage of dual-amplification effects of the Pt/Au and ZnO@CNT, this immunosensor could detect the PSA quantitatively, in the range of 0.001–500 ng mL−1, with a low detection limit of 0.61 pg mL−1. The resulting versatile immunosensor possesses high sensitivity, satisfactory reproducibility and regeneration. This simple and specific strategy has vast potential to be used in other biological assays.  相似文献   

4.
In this paper, a novel, low-cost electrochemiluminescence (ECL) immunosensor using core–shell Fe3O4–Au magnetic nanoparticles (AuMNPs) as the carriers of the primary antibody of carbohydrate antigen 125 (CA125) was designed. Graphene sheet (GS) with property of good conductivity and large surface area was a captivating candidate to amplify ECL signal. We successively synthesized functionalized GS by loading large amounts of quantum dots (QDs) onto the poly (diallyldimethyl-ammonium chloride) (PDDA) coated graphene sheet (P-GS@QDs) via self-assembly electrostatic reactions, which were used to label secondary antibodies. The ECL immunosensors coupled with a microfluidic strategy exhibited a wide detection range (0.005–50 U mL−1) and a low detection limit (1.2 mU mL−1) with the help of an external magnetic field to gather immunosensors. The method was evaluated with clinical serum sample, receiving good correlation with results from commercially available analytical procedure.  相似文献   

5.
In this work, a stable electrogenerated chemiluminescence (ECL) detector was developed. The detector was prepared by packing cation-exchanged resin particles in a glass tube, followed by inserting Pt wires (working electrode) in this tube and sealing. The leakage of Ru(bpy)32+ can be compensated by adding a small amount of Ru(bpy)32+ into solution phase. Coupled with high-performance liquid chromatography separation, the detector has been used for determination of itopride hydrochloride in human serum. Under the optimal conditions, the ECL intensity has a linear relationship with the concentration of itopride hydrochloride in the range of 1.0 × 10−8 g mL−1 to 1.0 × 10−6 g mL−1 and the detection limit was 3 × 10−9 g mL−1 (S/N = 3). The as-prepared ECL detector displayed good sensitivity and stability.  相似文献   

6.
Li J  Zhao F  Ju H 《Analytica chimica acta》2006,575(1):57-61
Amitriptyline, doxepin and chlorpromazine are often used as psychotropic drugs in treatment of the various mental diseases, and are also partly excreted by kidney. This work developed a simple, selective and sensitive method for their simultaneous monitoring in human urine using capillary electrophoresis coupled with electrochemiluminescence (ECL) detection based on end-column ECL reaction of tris-(2,2′-bipyridyl)ruthenium(II) with aliphatic tertiary amino moieties. Acetone was used as an additive to the running buffer to obtain their absolute separation. Under optimized conditions the proposed method displayed a linear range from 5.0 to 800 ng mL−1 for the three drugs with the correlation coefficients more than 0.995 (n = 8). Their limits of detection were 0.8 ng mL−1 (3.6 fg), 1.0 ng mL−1 (4.5 fg) and 1.5 ng mL−1 (6.8 fg) at a signal to noise ratio of 3, respectively. The relative standard deviations for five determinations of 20 ng mL−1 amitriptyline, doxepin and chlorpromazine were 1.7%, 4.2% and 3.6%, respectively. For practical application an extract step with 90:10 heptane/ethyl acetate (v/v) was performed to eliminate the influence of ionic strength in sample. The recoveries of amitriptyline, doxepin and chlorpromazine at different levels in human urine were between 83% and 93%, which showed that the method was valuable in clinical and biochemical laboratories for monitoring amitriptyline, doxepin and chlorpromazine.  相似文献   

7.
An ultrasensitive electrochemiluminescence (ECL) immunosensor based on CdSe quantum dots (QDs) has been designed for the detection of clenbuterol. The immunosensor was fabricated by layer by layer and characterized with atomic force microscopic images (AFM) and electrochemical impedance spectra (EIS). In oxygen-saturated pH = 9.0 Tris-HCl buffer, a strong ECL emission of QDs could be observed during the cathodic process due to the H2O2 product from electrochemical reduction of dissolved oxygen. Upon the formation of immunocomplex, the second antibody labeled with horseradish peroxidase was simply immobilized on the electrode surface. The ECL emission decreased since steric hindrance of the immunocomplex slowed down the electron-transfer speed of dissolved oxygen, and also could be greatly amplified by an enzymatic cycle to consume the self-produced coreactant. Using clenbuterol as model analyte, the ECL intensity was determined by the concentration of competitive immunoassay of clenbuterol with a wide calibration in the range of 0.05 ng mL−1 to 1000 ng mL−1, and a low detection limit was 0.02 ng mL−1. The immunosensor shows good stability and fabrication reproducibility. It was applied to detecting practical samples with the satisfactory results. This immunosensing strategy opens a new avenue for detection of residue and application of QDs in ECL biosensing.  相似文献   

8.
Ofloxacin (OFLX) exhibited strong electrogenerated chemiluminescence (ECL) in NaNO3 solution with a dual-electrode system when constant current was exerted. Based on this observation, a sensitive direct ECL method coupled with high-performance liquid chromatography (HPLC) separation was developed for determination of OFLX in human serum. Factors affected the ECL emission were investigated. Under the optimal conditions, the ECL intensity has a linear relationship with the concentration of OFLX in the range of 1.0 × 10−8 to 4.0 × 10−6 g mL−1 and the detection limit was 4 × 10−9 g mL−1 (S/N = 3). The proposed method was sensitive, simple and convenient to operate.  相似文献   

9.
In this work, we reported a sandwiched luminol electrochemiluminescence (ECL) immunosensor using ZnO nanoparticles (ZnONPs) and glucose oxidase (GOD) decorated graphene as labels and in situ generated hydrogen peroxide as coreactant. In order to construct the base of the immunosensor, a hybrid architecture of Au nanoparticles and graphene by reduction of HAuCl4 and graphene oxide (GO) with ascorbic acid was prepared. The resulted hybrid architecture modified electrode provided an excellent platform for immobilization of antibody with good bioactivity and stability. Then, ZnONPs and GOD functionalized graphene labeled secondary antibody was designed for fabricating a novel sandwiched ECL immunosensor. Enhanced sensitivity was obtained by in situ generating hydrogen peroxide with glucose oxidase and the catalysis of ZnONPs to the ECL reaction of luminol–H2O2 system. The as-prepared ECL immunosensor exhibited excellent analytical property for the detection of carcinoembryonic antigen (CEA) in the range from 10 pg mL−1 to 80 ng mL−1 and with a detection limit of 3.3 pg mL−1 (S N−1 = 3). The amplification strategy performed good promise for clinical application of screening of cancer biomarkers.  相似文献   

10.
Yan Xue  Guixin Li 《Talanta》2007,72(2):450-456
In this paper, it was found that the hydrophobic ion-associated complex of the molybdophosphoric heteropoly acid with protonated butyl-rhodamine B (BRhB) could be formed and was further selectively extracted into the bulk of the paraffin oil-based carbon paste electrode (CPE). At the same time, compared with other modifiers, the benzene-modified CPE created a suitable electrochemiluminescence (ECL) reaction microenvironment for electro-oxidation BRhB to produce the stronger ECL signal when a 1.30 V electrolytic potential was applied to the CPE in the alkaline medium. Based on these findings, a selective and sensitive ECL method for indirectly detecting phosphate was developed. Under the optimum experimental conditions, the ECL intensity was linear with the concentration of phosphate in the range of 2.0 × 10−10 to 1.0 × 10−8 g mL−1. The detection limit was 8.0 × 10−11 g mL−1. The proposed method has been applied successfully to the analysis of phosphate in the water samples.  相似文献   

11.
A novel ultrasound-assisted surfactant-enhanced emulsification microextraction (UASEME) coupled with high performance liquid chromatography-diode array detection has been developed for the extraction and determination of six carbamate pesticides (metolcarb, carbofuran, carbaryl, pirimicarb, isoprocarb and diethofencarb) in water samples. In the UASEME technique, Tween 20 was used as emulsifier, and chlorobenzene and chloroform were used as dual extraction solvent without using any organic dispersive solvent that is normally required in the previously described common dispersive liquid–liquid microextraction method. Parameters that affect the extraction efficiency, such as the kind and volume of the extraction solvent, the type and concentration of the surfactant, ultrasound emulsification time and salt addition, were investigated and optimized for the method. Under the optimum conditions, the enrichment factors were in the range between 170 and 246. The limits of detection of the method were 0.1–0.3 ng mL−1 and the limits of quantification were between 0.3 and 0.9 ng mL−1, depending on the compounds. The linearity of the method was obtained in the range of 0.3–200 ng mL−1 for metolcarb, carbaryl, pirimicarb, and diethofencarb, 0.6–200 ng mL−1 for carbofuran, and 0.9–200 ng mL−1 for isoprocarb, with the correlation coefficients (r) ranging from 0.9982 to 0.9998. The relative standard deviations varied from 3.2 to 4.8% (n = 5). The recoveries of the method for the six carbamates from water samples at spiking levels of 1.0, 10.0, 50.0 and 100.0 ng mL−1 were ranged from 81.0 to 97.5%. The proposed UASEME technique has demonstrated to be simple, practical and environmentally friendly for the determination of carbamates residues in river, reservoir and well water samples.  相似文献   

12.
An ultrasensitive multiplexed immunoassay method was developed at a disposable immunosensor array using mesoporous platinum nanoparticles (M-Pt NPs) as nonenzymatic labels. M-Pt NPs were prepared by ultrasonic method and employed to label the secondary antibody (Ab2) for signal amplification. The immunosensor array was constructed by covalently immobilizing capture antibody (Ab1) on graphene modified screen printed carbon electrodes (SPECs). After the sandwich-type immunoreactions, the M-Pt-Ab2 was bound to immunosensor surface to catalyze the electro-reduction of H2O2 reaction, which produced detectable signals for readout of analytes. Using breast cancer related panel of tumor markers (CA125, CA153 and CEA) as model analytes, this method showed wide linear ranges of over 4 orders of magnitude with the detection limits of 0.002 U mL−1, 0.001 U mL−1 and 7.0 pg mL−1 for CA125, CA153 and CEA, respectively. The disposable immunosensor array possessed excellent clinical value in cancer screening as well as convenient point of care diagnostics.  相似文献   

13.
In this work, an ultrasensitive peroxydisulfate electrochemiluminescence (ECL) immunosensor using in situ generation of l-homocysteine (l-Hcys) for signal amplification was successfully constructed for detection of carcinoembryonic antigen (CEA). In the reaction of biological methylation, S-adenosyl-l-homocysteine hydrolase (SAHH) catalyzed the reversible hydrolysis of S-adenosyl-l-homocysteine (SAH) to produce l-Hcys, which was inducted into ECL system to construct the immunosensor for signal amplification in this work. Simultaneously, Gold and palladium nanoparticles functionalized multi-walled carbon nanotubes (Au-PdNPs@MWCNTs) were prepared, which were introduced to immobilize the secondary antibody (Ab2) and SAHH with high loading amount and good biological activity due to their improved surface area and excellent biocompatibility. Then the proposed ECL immunosensor was developed by a sandwich-type format using Au-PdNPs@MWCNTs-SAHH-Ab2 as tracer and graphene together with AuNPs as substrate. Besides the enhancement of Au-PdNPs, the enzymatic catalysis reaction also amplified the ECL signal dramatically, which was achieved by efficient catalysis of the SAHH towards the hydrolysis of SAH to generate improved amount of l-Hcys in situ. Furthermore, due to the special interaction between Au-PdNPs and -SH or -NH2 in l-Hcys, l-Hcys would gradually accumulate on the surface of the immunosensor, which greatly enhanced the concentration of l-Hcys on the immunosensor surface and further improved the ECL intensity. With the amplification factors above, a wide linear ranged from 0.1 pg mL−1 to 80 ng mL−1 was acquired with a relatively low detection limit of 33 fg mL−1 for CEA.  相似文献   

14.
In the present study, a novel and ultrasensitive electrochemiluminescence (ECL) immunosensor based on luminol cathodic ECL was fabricated by using Au nanoparticles and Pt nanoparticles (nano-AuPt) electrodeposited on graphene–carbon nanotubes nanocomposite as platform for the detection of carcinoembryonic antigen (CEA). For this introduced immunosensor, graphene (GR) and single wall carbon nanotubes (CNTs) dispersed in chitosan (Chi-GR-CNTs) were firstly decorated on the bare gold electrode (GE) surface. Then nano-AuPt were electrodeposited (DpAu-Pt) on the Chi-GR-CNTs modified electrode. Subsequently, glucose oxidase (GOD) was employed to block the non-specific sites of electrode surface. When glucose was present in the working buffer solution, GOD immediately catalyzed the oxidation of glucose to in situ generate hydrogen peroxide (H2O2), which could subsequently promote the oxidation of luminol with an amplified cathodic ECL signal. The proposed immunosensor was performed at low potential (−0.1 to 0.4 V) and low concentration of luminol. The CEA was determined in the range of 0.1 pg mL−1 to 40 ng mL−1 with a limit of detection down to 0.03 pg mL−1 (S N−1 = 3). Moreover, with excellent sensitivity, selectivity, stability and simplicity, the as-proposed luminol-based ECL immunosensor provided great potential in clinical applications.  相似文献   

15.
Yonghua Sun  Zhijun Xi  Zuolong Shi 《Talanta》2009,79(3):676-1696
A simple and sensitive liquid chromatographic method coupled with electrogenerated chemiluminescence (ECL) was described for the separation and quantification of naproxen in human urine. The method was based on the ECL of naproxen in basic NaNO3 solution with a dual-electrode system. Factors affected the ECL emission were investigated. Under the optimal conditions, the ECL intensity has a linear relationship with the concentration of naproxen in the range of 4.0 × 10−8 g mL−1 to 2.0 × 10−6 g mL−1 and the detection limit was 1.6 × 10−8 g mL−1 (S/N = 3). Application of the method to the analyses of naproxen in human urine proved feasible.  相似文献   

16.
In this paper the strong electrochemiluminescence (ECL) nanoparticles have been prepared based on the anionic polyelectrolyte sodium polyacrylate (PAA)-ECL enhancement for Ru(bpy)32+, which were loaded by the carrier of SiO2 nanoparticle. There were two kinds of Ru(bpy)32+ for the as-prepared nanoparticles, the doped one and the exchanged one. The former was loaded inside the ECL nanoparticles by doping, in a form of ion-pair macromolecules PAA–Ru(bpy)32+. The corresponding ECL was enhanced about 2 times owing to the doping increase of Ru(bpy)32+. The latter was loaded on the PAA-doped Nafion membrane by ion exchange. The corresponding ECL was enhanced about 3 times owing to the ion-exchanging increase of Ru(bpy)32+. At the same time, ECL intensity of the doped-inside Ru(bpy)32+ was further enhanced 13 times because polyelectrolyte PAA in the doped membrane could obviously enhance electron transfer between the doped Ru(bpy)32+ and the working electrode. Furthermore, based on hydrophobic regions of the doped membrane antibody labeling could be easily realized by the as-prepared nanoparticles and then a high sensitive ECL immunoassay for HBsAg was developed. The linear range was between 1.0 and 100 pg mL−1 (R2 = 0.9912). The detection limit could be as low as 0.11 pg mL−1 (signal-to-noise ratio = 3).  相似文献   

17.
A novel photonic suspension array was developed for multiplex immunoassay. The carries of this array were silica colloidal crystal beads (SCCBs). The codes of these carriers are the characteristic reflection peak originated from their structural periodicity, and therefore they do not suffer from fading, bleaching, quenching, and chemical instability. In addition, because no dyes or materials related with fluorescence are included, the fluorescence background of SCCBs is very low. With a sandwich format, the proposed suspension array was used for simultaneous multiplex detection of tumor markers in one test tube. The results showed that the four tumor markers, α-fetoprotein (AFP), carcinoembryonic antigen (CEA), carcinoma antigen 125 (CA 125) and carcinoma antigen 19-9 (CA 19-9) could be assayed in the ranges of 1.0-500 ng mL−1, 1.0-500 ng mL−1, 1.0-500 U mL−1 and 3.0-500 U mL−1 with limits of detection of 0.68 ng mL−1, 0.95 ng mL−1, 0.99 U mL−1 and 2.30 U mL−1 at 3σ, respectively. The proposed array showed acceptable accuracy, detection reproducibility, storage stability and the results obtained were in acceptable agreement with those from parallel single-analyte test of practical clinical sera. This technique provides a new strategy for low cost, automated, and simultaneous multiplex immunoassay.  相似文献   

18.
Three-dimensional macroporous gold nanoparticles/graphene composites (3D-AuNPs/GN) were synthesized through a simple two-step process, and were used to modify working electrode sensing platform, based on which a facile electrochemical immunoassay for sensitive detection of carcinoembryonic antigen (CEA) in human serum was developed. In the proposed 3D-AuNPs/GN, AuNPs were distributed not just on the surface, but also on the inside of graphene. And this distribution property increased the area of sensing surface, resulting in capturing more primary antibodies as well as improving the electronic transmission rate. In the presence of CEA, a sandwich-type immune composite was formed on the sensing platform, and the horseradish peroxidase-labeled anti-CEA antibody (HRP-Ab2)/thionine/nanoporous silver (HRP-Ab2/TH/NPS) signal label was captured. Under optimal conditions, the electrochemical immunosensor exhibited excellent analytical performance: the detection range of CEA is from 0.001 to 10 ng mL−1 with low detection limit of 0.35 pg mL−1 and low limit of quantitation (LOQ) of 0.85 pg mL−1. The electrochemical immunosensor showed good precision, acceptable stability and reproducibility, and could be used for the detection of CEA in real samples. The proposed method provides a promising platform of clinical immunoassay for other biomolecules  相似文献   

19.
Small molecules or analytes present at low concentrations are difficult to detect directly using conventional surface plasmon resonance (SPR) techniques because only small changes in the refractive index of the medium are typically induced by the binding of these analytes. Here, we present an amplification technique using core–shell Fe3O4@Au magnetic nanoparticles (MNPs) for an SPR bioassay. To evaluate this amplification effect, a novel SPR sensor based on a sandwich immunoassay was developed to detect α-fetoprotein (AFP) by immobilizing a primary AFP antibody (Ab1) on the surface of a 3-mercapto-1-propanesulfonate/chitosan-ferrocene/Au NP (MPS/CS-Fc/Au NP) film employing Fe3O4@Au–AFP secondary antibody conjugates (Fe3O4@Au–Ab2) as the amplification reagent. The stepwise fabrication of the biosensor was characterized using UV-vis spectroscopy, electrochemical impedance spectroscopy, and cyclic voltammetry. A calibration curve of Fe3O4@Au–Ab2 conjugates amplification for AFP detection was obtained to yield a correlation in the range of 1.0–200.0 ng mL−1 with a detection limit of 0.65 ng mL−1, and a significant increase in sensitivity was therefore afforded through the use of Fe3O4@Au–Ab2 conjugates as an amplifier. This magnetic separation and amplification strategy has great potential for the detection of other biomolecules of interest with low interference and high sensitivity by changing the antibody label used in the Fe3O4@Au–antibody conjugates.  相似文献   

20.
Accurate determination of concentration of immunoglobulin (IgG) to tetanus toxoid is important in order to evaluate the immunogenicity of tetanus toxoid vaccines, immune competence in individual patients and to measure the prevalence of immunity in populations. Surface modified polyacrylonitrile (PAN) fibers were evaluated as a matrix to develop highly sensitive method for the detection of anti-tetanus antibody in a sandwich ELISA format. In the proposed method tetanus toxoid immobilized on modified PAN fibers was used to detect anti-tetanus antibody (raised in horse hence represented as horse anti-tetanus toxoid or HAT-Ab) with horse raddish peroxidase enzyme conjugated with Rabbit anti-Horse IgG (RAH-HRP) as the label within 2.5 h. A sigmoidal pattern for the detection of different concentration of antibody ranging from 1.0 to 0.0001 IU mL−1 was validated. The immunoassay recorded a very high sensitivity as concentration as low as 0.0005 IU mL−1 of HAT-Ab was detected. The intra- and inter-assay precision for 3 parallel measurements of 0.01 and for 0.001 IU mL−1 of antibody varied from 5.4% to 11% and 5.7% to 20% respectively. PAN fibers were also used to qualitatively access the presence of different level of anti-tetanus antibody spiked in human blood. Seroepidemiological studies to measure the immunity against tetanus were conducted with twenty-five human beings belonging to various age groups using modified PAN-ELISA. The sensitivity, specificity and the reproducibility of the developed immunoassay indicate the potential application of modified PAN fibers in the field of immunodiagnostics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号