首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this work, a simple, rapid, reliable and low cost method for simultaneous electrochemical determination of As, Cu, Hg and Pb ions, on a vibrating gold microwire electrode combined with stripping voltammetry, is described for the first time.The multi-element detection was performed in the presence of oxygen by differential pulse anodic stripping voltammetry (DPASV) in HCl 0.1 M with NaCl 0.5 M. This media was found optimum in terms of peak resolution, peak shape and sensitivities, and has a composition similar to seawater to which the method could potentially be applied. The gold microwire electrode presented well defined, undistorted, sharp and reproducible peaks for trace concentrations of Cu, Hg and Pb and As presented a reproducible peak with a small shoulder. Using a gold vibrating microwire electrode of 25 μm diameter and 30 s deposition time, the detection limits of As, Cu, Hg and Pb were 0.07, 0.4, 0.07 and 0.2 μg L−1, respectively. Possible effects of Al, Cd, Cr, Fe, Mn, Ni, Sb and Zn were investigated but did not cause any significant interferences.Finally, the method was applied for the simultaneous determination of these four metals in unpolluted river water samples and the results were validated by Atomic Absorption Spectroscopy with Electrothermal Atomization (AAS-EA) or by Inductively Coupled Plasma Mass Spectrometry (ICP-MS).  相似文献   

2.
Sensitive and stable monitoring of heavy metals in seawater using screen-printed electrodes (SPE) is presented. The analytical performance of SPE coupled with square wave anodic stripping voltammetry (SWASV) for the simultaneous determination of Pb and Cd in seawater samples, in the low μg L−1 range, is evaluated. The stripping response for the heavy metals following 2 min deposition was linear over the concentration range examined (10-2000 μg L−1) with detection limits of 1.8 and 2.9 μg L−1 for Pb and Cd, respectively. The accuracy of the method was validated by analyzing metal contents in different spiked seawater samples and comparing these results to those obtained with the well-established anodic stripping voltammetry using the hanging mercury drop electrode. Moreover, a certified reference material was also used and the results obtained were satisfactory.  相似文献   

3.
This work reports the use of and -cyclodextrin-modified carbon paste electrodes (CPE-CD and CPE-CD) to determine simultaneously Pb(II) and Cd(II) by means of the electrochemical technique known as anodic stripping voltammetry (ASV). Both modified electrodes displayed good resolution of the oxidation peaks of the said metals. Statistic analysis of the results strongly suggests that the CPE-CD exhibited a better analytical response that the CPE-CD, while the detection limits obtained for Pb(II) were 6.3×10–7 M for the CPE-CD and 7.14×10–7 M for the CPE-CD, whereas for Cd(II) they were 2.51×10–6 M for the CPE-CD and 2.03×10–6 M for the CPE-CD.  相似文献   

4.
Direct electrochemical determination of arsenate (AsV) in neutral pH waters is considered impossible due to electro-inactivity of AsV. AsIII on the other hand is readily plated as As0 on a gold electrode and quantified by anodic stripping voltammetry (ASV). We found that the reduction of AsV to AsIII was mediated by elemental Mn on the electrode surface in a novel redox couple in which 2 electrons are exchanged causing the Mn to be oxidised to MnII. Advantage is taken of this redox couple to enable for the first time the electrochemical determination of AsV in natural waters of neutral pH including seawater by ASV using a manganese-coated gold microwire electrode. Thereto Mn is added to excess (∼1 μM Mn) to the water leading to a Mn coating during the deposition of As on the electrode at a deposition potential of −1.3 V. Deposition of As0 from dissolved AsV caused elemental Mn to be re-oxidised to MnII in a 1:1 molar ratio providing evidence for the reaction mechanism. The deposited AsV is subsequently quantified using an ASV scan. AsIII interferes and should be quantified separately at a more positive deposition potential of −0.9 V. Combined inorganic As is quantified after oxidation of AsIII to AsV using hypochlorite. The microwire electrode was vibrated during the deposition step to improve the sensitivity. The detection limit was 0.2 nM AsV using a deposition time of 180 s.  相似文献   

5.
Lead and cadmium have been determined by subtractive anodic-stripping voltammetry (SASV) in the square-wave mode at a silver electrode without removal of oxygen. The sensitivities and detection limits for the two metals differ considerably. Detection limits of 0.05 nM for lead and 1 nM for cadmium have been achieved following 90 s electrodeposition. The repeatability of consecutive SASV runs is good (for lead 0.5% at 20 nM for 30 s electrolysis, 5% at 0.3 nM for 60 s electrolysis; for cadmium 2.5% at 20 nM for 30 s electrolysis, 5% at 5 nM for 60 s). Hundreds of runs can be carried out without any pretreatment of the electrode. The high stability is attributed to renewal of the electrode surface that takes place during the electrodeposition step in a two-electrode cell: the silver counter/quasi-reference electrode generates silver ions that codeposit with lead and cadmium at the Ag-RDE, thus ensuring a continuity of the latter. Underpotential deposition (UPD) plays a central role in anodic-stripping voltammetry (ASV). During the deposition step, the adatom coverage of trace elements is in the range of 0.01-1% and no bulk deposition is invoked for metals that exhibit UPD. The UPD properties and, as a result, the ASV signals are strongly affected by the type and concentration of the supporting electrolyte. The effects of Cl, Br, SO42− and NO3 are shown. The analysis of lead and cadmium in natural waters has been performed. Surfactants distort the SASV signal. In order to ensure surfactant-free solutions, the samples were pretreated by wet ashing.  相似文献   

6.
A bismuth bulk electrode (BiBE) has been investigated as an alternative electrode for the anodic stripping voltammetric (ASV) analysis of Pb(II), Cd(II), and Zn(II). The BiBE, which is fabricated in-house, shows results comparable to those of similar analyses at other Bi-based electrodes. Metal accumulation is achieved by holding the electrode potential at −1.4 V (vs. Ag/AgCl) for 180 s followed by a square wave voltammetric stripping scan from −1.4 to −0.35 V. Calibration plots are obtained for all three metals, individually and simultaneously, in the10-100 μg L−1 range, with a detection limit of 93, 54, and 396 ng L−1 for Pb(II), Cd(II), Zn(II), respectively. A slight reduction in slope is observed for Cd(II) and Pb(II) when the three metals are calibrated simultaneously vs. individually. Comparing the sensitivities of the metals when calibrated individually vs. in a mixture reveals that Zn(II) is not affected by stripping in a mixture. However, Pb(II) and Cd(II) have decreasing sensitivities in a mixture. The optimized method has been successfully used to test contaminated river water by standard addition. The results demonstrate the ability of the BiBE as an alternative electrode material in heavy metal analysis.  相似文献   

7.
A cost-effective sequential injection monosegmented flow analysis (SI-MSFA) with anodic stripping voltammetric (ASV) detection has been developed for determination of Cd(II) and Pb(II). The bismuth film working electrode (BiFE) was employed for accumulative preconcentration of the metals by applying a fixed potential of −1.10 V versus Ag/AgCl electrode for 90 s. The SI-MSFA provides a convenient means for preparation of a homogeneous solution zone containing sample in an acetate buffer electrolyte solution and Bi(III) solution for in situ plating of BiFE, ready for ASV measurement at a flow through thin layer electrochemical cell. Under the optimum conditions, linear calibration graphs in range of 10-100 μg L−1 of both Cd(II) and Pb(II) were obtained with detection limits of 1.4 and 6.9 μg L−1 of Cd(II) and Pb(II), respectively. Relative standard deviations were 2.7 and 3.1%, for 11 replicate analyses of 25 μg L−1 Cd(II) and 25 μg L−1 Pb(II), respectively. A sample throughput of 12 h−1 was achieved with low consumption of reagent and sample solutions. The system was successfully applied for analysis of water samples collected from a draining pond of zinc mining, validating by inductively coupled plasma-optical emission spectroscopy (ICP-OES) method.  相似文献   

8.
The oxidation potentials of As0/AsIII and Sb0/SbIII on the gold electrode are very close to each other due to their similar chemistry. Arsenic concentration in seawater is low (10–20 nM), Sb occurring at ∼0.1 time that of As. Methods are shown here for the electroanalytical speciation of inorganic arsenic and inorganic antimony in seawater using a solid gold microwire electrode. Anodic stripping voltammetry (ASV) and chronopotentiometry (ASC) are used at pH ≤ 2 and pH 8, using a vibrating gold microwire electrode. Under vibrations, the diffusion layer size at a 5 μm diameter wire is 0.7 μm. The detection limits for the AsIII and SbIII are below 0.1 nM using 2 min and 10 min deposition times respectively. AsIII and SbIII can be determined in acidic conditions (after addition of hydrazine) or at neutral pH. In the latter case, oxidation of As0 to AsIII was found to proceed through a transient AsIII species. Adsorption of this species on the gold electrode at potentials where SbIII diffused away is used for selective deposition of AsIII. Addition of EDTA removes the interfering effect of manganese when analysing AsIII. Imposition of a desorption step for SbIII analysis is required. Total inorganic arsenic (iAs = AsV + AsIII) can be determined without interference from Sb nor mono-methyl arsenious acid (MMA) at 1.6 < pH < 2 using Edep = −1 V. Total inorganic antimony (iSb = SbV + SbIII) is determined at pH 1 using Edep = −1.8 V without interference by As.  相似文献   

9.
We examined the use of a bismuth-glassy carbon (Bi/C) composite electrode for the determination of trace amounts of lead and cadmium. Incorporated bismuth powder in the composite electrode was electrochemically dissolved in 0.1 M acetate buffer (pH 4.5) where nanosized bismuth particles were deposited on the glassy carbon at the reduction potential. The anodic stripping voltammetry on the Bi/C composite electrode exhibited well-defined, sharp and undistorted peaks with a favorable resolution for lead and cadmium. Comparing a non-oxidized Bi/C composite electrode with an in-situ plated bismuth film electrode, the Bi/C composite electrode exhibited superior performance due to its much larger surface area. The limit of detection was 0.41 μg/L for lead and 0.49 μg/L for cadmium. Based on this study, we are able to conclude that various types of composite electrodes for electroanalytical applications can be developed with a prudent combination of electrode materials.  相似文献   

10.
This work exploited a sequential injection lab-on-valve (LOV) system for the determination of cadmium by anodic stripping voltammetry (ASV). A miniaturized electrochemical flow cell (EFC) was fabricated in LOV, in which a nafion coated bismuth film electrode was used as working electrode. The cadmium was electrodeposited on the electrode surface in bismuth solution, and measured with the subsequential stripping scan. Under optimal conditions, the proposed system responded linearly to cadmium concentrations in a range 2.0-100.0 μg L−1. The detection limit of this method was found to be 0.88 μg L−1. By loading a sample volume of 800 μL, a sampling frequency of 22 determinations h−1 was achieved. The repeatability expressed as relative standard derivation (R.S.D.) was 3.65% for 20 μg L−1 cadmium (n = 11). The established method was applied to analysis of trace cadmium in environmental water samples and the spiked recoveries were satisfactory.  相似文献   

11.
The efficacy of silver-deposited glassy carbon electrode for the determination of lead ions at the sub-nanomolar concentration ranges is investigated. The silver nanoparticles are electrodeposited on glassy carbon electrode using chronoamperometry and the electrode surface is characterized using SEM. Lead ions are detected in the region of underpotential deposition. The analysis is performed in square wave mode in the stripping voltammetry without the removal of oxygen. The detection limit of 10 pM has been obtained with a constant potential of −0.7 V during the electrodeposition step for a period of 50 s. The interference of surfactants in the detection of lead ions is also studied.  相似文献   

12.
We have examined the anodic stripping voltammetry (ASV) of Cd and Pb at carbon screen printed electrodes modified by an in situ deposited Bi film, and have demonstrated significant cross talk between the stripping peaks of the two metals. A simple and generally applicable method for dealing with this problem is described, based on curve-fitting three-dimensional calibration plots using MATLAB. Non-linear fitting to the calibrations produced coefficients of determination R2 > 0.99 for both metals. We have illustrated use of the plots in conjunction with Bi-plated electrodes by measuring 15 randomly selected mixtures of Cd and Pb of known concentration.  相似文献   

13.
In the present work the anodic stripping voltammetric (ASV) methodology using a thin mercury film electrode in situ plated in thiocyanate media was re-assessed in order to allow the simultaneous determination of copper and lead in seawater. Under previously suggested conditions [6], i.e. using a concentration of thiocyanate of 5 mM, the ASV peaks of copper and lead overlapped due to the formation of a stable copper(I)-thiocyanate species, limiting the analytical determinations. Therefore, the best value for the thiocyanate concentration was re-evaluated: for 0.05 mM a trade-off between good resolution of the copper and lead peaks and high reproducibility of the mercury film formation/removing processes was achieved. In this media, the ASV peaks for Pb and Cu occurred, separated by 140 mV. Also, the in situ thin mercury film electrode was produced and removed with good repeatability, which was confirmed by the relative standard deviation values for the ASV determinations: 0.5% for Pb and 2.0% for Cu (10 replicate determinations in a solution with metal concentrations 1.5×10−8 M for lead and 2.2×10−8 M for copper). The optimised methodology was successfully applied to the determination of copper in the presence of lead, in certified seawater (NASS-5).  相似文献   

14.
Carbon, gold and silver microwires are revisited under vibrated conditions for detection of trace lead and cadmium in seawater. The Pb and Cd peaks fully overlapped on the bare gold and carbon electrodes and partially on the silver electrode. The sensitivity of all three was insufficient for detection in uncontaminated waters. Peak separation was obtained after coating with mercury (Hg). Only the Hg‐coated silver electrode is suitable when preplated. Limits of detection for Pb using the Hg/C and Hg/Ag electrodes (20–40 pM), and Cd (70 pM), are sufficiently low for Pb and Cd detection in seawater.  相似文献   

15.
The determination of Pb and Cd with a Nafion‐modified glassy carbon electrode and Cu‐DPABA complex (Cu‐DPABA–NA/GCE; DPABA is methyl 3,5‐bis{bis‐[(pyridin‐2‐yl)methyl]amino}methyl‐benzoate) as an alternative electrode for anodic stripping voltammetry was described. Pb and Cd were accumulated in acetate buffer pH 4 at a potential of ?1.4 V (vs. Ag/AgCl electrode) for 120 s followed by a DPASV scan from ?1.2 to ?0.2 V. Under optimum conditions the calibration curves were linear in the range of 4.8×10?9–5.0×10?5 and 5.0×10?9–5×10?5 mol L?1 for Pb and Cd, respectively. Detection limits were 1.8×10?9 and 1.2×10?9 mol L?1 for Pb and Cd, respectively. Different parameters and conditions, such as membrane ingredients, accumulation time, potential and pH value were optimized. A study of interfering substances was also performed. A significant increase in current was achieved at the modified electrode in comparison with the bare glassy carbon electrode. The validation of the proposed method was made by Pb and Cd determination in the certified reference material Groundwater CRM 610 (BCR, Community Bureau of Reference, Brussels, Belgium). The electrode was successfully applied for determination of Pb and Cd in river water with a high content of organic contaminants without any pretreatment.  相似文献   

16.
A new electrochemical method has been developed to detect and quantify the elemental impurities, cadmium(II) (Cd2+) and lead(II) (Pb2+), either simultaneously or individually in pharmaceutical matrices. The electro-analytical approach, involving the use of anodic stripping voltammetry (ASV) on an unmodified glassy carbon electrode, was performed in both aqueous and in a 95/5 dimethyl sulfoxide (DMSO)/water solutions, without acid digestion or dry ashing to remove organic matrices. Limits of detection (LODs) in the μg L−1 [or parts per billion (ppb), mass/volume] range were obtained for both heavy metals - in the presence and absence of representative pharmaceutical components. To the best of our knowledge, the work demonstrates the first analysis of heavy metals in DMSO/water solutions through ASV. The strong reproducibility and stability of the sensing platform, as well as obviation of sample pretreatment show the promise of utilizing ASV as a sensitive, robust, and inexpensive alternative to inductively-coupled-plasma (ICP)-based approaches for the analysis of elemental impurities in, e.g., pharmaceutical-related matrices.  相似文献   

17.
A rapid electrochemical stripping chronopotentiometric procedure to determined sulfide in unaltered hydrothermal seawater samples is presented. Sulfide is deposited at −0.25 V (vs Ag/AgCl, KCl 3 M) at a vibrating gold microwire and then stripped through the application of a reductive constant current (typically −2 μA). The hydrodynamic conditions are modulated by vibration allowing a short deposition step, which is shown here to be necessary to minimize H2S volatilization. The limit of detection (LOD) is 30 nM after a deposition step of 7 s. This LOD is in the same range as the most sensitive cathodic voltammetric technique using a mercury drop electrode and is well below those reported previously for other electrodes capable of being implemented in situ.  相似文献   

18.
A solid, bismuth (Bi), disk, electrode is used to determine lead (Pb) in natural waters including seawater. The diffusion layer thickness was lowered from 93 to 29 µm by stirring, and to 18 µm by using the vibrated version of the Bi electrode. The Bi electrode does not require removal of dissolved oxygen, which facilitates in situ detection. The electrode was tested for the determination of Pb in coastal seawater samples. The detection limit for Pb was 0.15 nM in acetate buffer and 0.5 nM in seawater using a 2 min deposition time. Cadmium can be determined together with Pb but the sensitivity is about 10×lower. The Bi electrode compares unfavourably to a mercury electrode in terms of sensitivity.  相似文献   

19.
Jakmunee J  Junsomboon J 《Talanta》2008,77(1):172-175
An anodic stripping voltammetric method has been developed for determination of cadmium, lead, copper and zinc in acetic acid extract of glazed ceramic surfaces. An aliquot of 4% (v/v) acetic acid solution was kept in a ceramic ware for 24 h in the dark, then 10 mL of the extracted solution was placed in a voltammetric cell. The solution was purged with oxygen free nitrogen gas for 3 min before deposition of the metals was carried out by applying a constant potential of −1.20 V versus Ag/AgCl to the hanging mercury drop electrode (HMDE) for 45 s. A square wave waveform was scanned from −1.20 to 0.15 V and a voltammogram was recorded. A standard addition procedure was used for quantification. Detection limits of 0.25, 0.07, 2.7 and 0.5 μg L−1 for cadmium, lead copper and zinc, respectively, were obtained. Relative standard deviations for 11 replicate determinations of 100 μg L−1 each of all the metals were in the range of 2.8-3.6%. Percentage recoveries obtained by spiking 50 μg L−1 of each metal to the sample solution were in the range of 105-113%. The method was successfully applied to ceramic wares producing in Lampang province of Thailand. It was found that the contents of cadmium, lead, copper and zinc released from the samples were in the range of <0.01-0.16, 0.02-0.45, <0.14 and 0.28-10.36 μg dm−2, respectively, which are lower than the regulated values of the Thai industrial standard. The proposed method is simpler, more convenient and more sensitive than the standard method based on FAAS.  相似文献   

20.
New insights into the functioning, i.e. electrochemical behaviour and analytical performance, of in situ prepared antimony film electrodes (SbFEs) under square-wave anodic stripping (SW-ASV) and cyclic (CV) voltammetry conditions are presented by studying several key operational parameters using Pb(II), Cd(II) and Zn(II) as model analyte ions. Five different carbon- and metal-based substrate transducer electrodes revealed a clear advantage of the former ones while the concentration of the precursor Sb(III) ion exhibited a distinct influence on the ASV functioning of the SbFE. Among six acids examined as potential supporting electrolytes the HNO3 was demonstrated to yield nearly identical results in conducting ASV experiments with SbFE as so far almost exclusively used HCl. This is extremely important as HNO3 is commonly employed acidifying agent in trace metal analysis, especially in elemental mass spectrometry measurements. By carrying out a systematic CV and ASV investigation using a medium exchange protocol, we confirmed the formation of poorly soluble oxidized Sb species at the substrate electrode surface at the end of each stripping step, i.e. at the potentials beyond the anodic dissolution of the antimony film. Hence, the significance of the cleaning and initializing the surface of a substrate electrode after accomplishing a stripping step was thoroughly studied in order to find conditions for a complete removal of the adhered Sb-oxides and thus to assure a memory-free functioning of the in situ prepared SbFE. Finally, the practical analytical application of the proposed ASV method was successfully tested and evaluated by measuring the three metal analytes in ground (tap) and surface (river) water samples acidified with HNO3. Our results approved the appropriateness of the SbFE and the proposed method for measuring low μg L−1 levels of some toxic metals, particularly taking into account the possibility of on-field testing and the use of low cost instrumentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号