首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Gold nanoparticles have shown potential in photothermal cancer therapy and optoelectronic technology. In both applications, a call for small size nanorods is warranted. In the present work, a one-pot seedless synthetic technique has been developed to prepare relatively small monodisperse gold nanorods with average dimensions (length × width) of 18 × 4.5 nm, 25 × 5 nm, 15 × 4.5 nm, and 10 × 2.5 nm. In this method, the pH was found to play a crucial role in the monodispersity of the nanorods when the NaBH(4) concentration of the growth solution was adjusted to control the reduction rate of the gold ions. At the optimized pH and NaBH(4) concentrations, smaller gold nanorods were produced by adjusting the CTAB concentration in the growth solution. In addition, the concentration of silver ions in the growth solution was found to be pivotal in controlling the aspect ratio of the nanorods. The extinction coefficient values for the small gold nanorods synthesized with three different aspect ratios were estimated using the absorption spectra, size distributions, and the atomic spectroscopic analysis data. The previously accepted relationships between the extinction coefficient or the longitudinal band wavelength values and the nanorods' aspect ratios found for the large nanorods do not extend to the small size domain reported in the present work. The failure of extending these relationships over larger sizes is a result of the interaction of light with the large rods giving an extinction band which results mostly from scattering processes while the extinction of the small nanorods results from absorption processes.  相似文献   

2.
以不同阴离子表面活性剂作为添加剂种子生长法制备金纳米棒, 并考察阴离子表面活性剂种类对金纳米棒形貌及光学性质的影响。在十二烷基苯基磺酸钠(SDBS)存在下, 金纳米棒的产率明显高于使用十二烷基磺酸钠的反应体系。对添加SDBS的种子生长法制备金纳米棒的反应条件进行优化, 得到十六烷基三甲基溴化铵、SDBS、抗坏血酸和硝酸银的最佳浓度分别为0.04 mol·L-1、2.4 mmol·L-1、1.2 mmol·L-1和0.08 mmol·L-1。在此条件下, 金纳米棒的生长在30 min内完成, 所制备的金纳米棒表面等离子共振吸收峰位于823 nm, 其横纵比为(5±0.03)。当改变生长液中硝酸银浓度时, 金纳米棒的尺寸也随之发生改变。此外, 我们还探讨了SDBS的作用机理。相对于经典种子生长法, 新方法制备纳米金棒在尺寸可调性、单分散性和生物毒性方面明显改善, 可广泛应用于各种光学及生物分析。  相似文献   

3.
以不同阴离子表面活性剂作为添加剂种子生长法制备金纳米棒,并考察阴离子表面活性剂种类对金纳米棒形貌及光学性质的影响。在十二烷基苯基磺酸钠(SDBS)存在下,金纳米棒的产率明显高于使用十二烷基磺酸钠的反应体系。对添加SDBS的种子生长法制备金纳米棒的反应条件进行优化,得到十六烷基三甲基溴化铵、SDBS、抗坏血酸和硝酸银的最佳浓度分别为0.04 mol.L-1、2.4 mmol.L-1、1.2 mmol.L-1和0.08 mmol.L-1。在此条件下,金纳米棒的生长在30 min内完成,所制备的金纳米棒表面等离子共振吸收峰位于823 nm,其横纵比为(5±0.03)。当改变生长液中硝酸银浓度时,金纳米棒的尺寸也随之发生改变。此外,我们还探讨了SDBS的作用机理。相对于经典种子生长法,新方法制备纳米金棒在尺寸可调性、单分散性和生物毒性方面明显改善,可广泛应用于各种光学及生物分析。  相似文献   

4.
The seed-mediated approach to making gold nanorods in aqueous surfactant solutions has become tremendously popular in recent years. Unlike the use of strong chemical reductants to make spherical gold nanoparticles, the growth of gold nanorods requires weak reducing conditions, leading to an unknown degree of gold reduction. The metal content of gold nanorods, made in high yield in the presence of silver ion, is determined by inductively coupled plasma atomic emission spectroscopy. Through the use of the known gold concentration in nanorods, molar extinction coefficients are calculated for nanorods of varying aspect ratios from 2.0 to 4.5. The extinction coefficients at the longitudinal plasmon band peak maxima for these nanorods vary from 2.5x10(9) to 5.5x10(9) M-1 cm-1, respectively, on a per-particle basis. Many of the gold ions present in the growth solution remain unreacted; insights into the growth mechanism of gold nanorods are discussed.  相似文献   

5.
Gold nanorods (AuNRs) were obtained via a wet chemistry technique, in aqueous medium, employing crystallisation seeds. The kinetics of formation, the aspect ratio, and the selectivity of the particles were evaluated according to the parameters of synthesis: the growth-driving agent, seed, and gold precursor concentrations. In 2–4 h, the rod particles attained the expected size and shape under kinetic control, and were stable for at least 2 days. In order to obtain good quality AuNRs in good yields, without enrichment, we suggest keeping the growth-driving agent/gold molar ratio, the AuI/seed ratio, and the concentration of the reagents in the final solution within specific ranges. For example, even if good molar ratios between the reagents are maintained, relatively highly concentrated reaction solutions lead to AuNRs with lower aspect ratios. The main properties of the prepared colloidal systems and the nanoparticles were evaluated by UV–vis spectroscopy and transmission electron microscopy, respectively.  相似文献   

6.
Electrochemically prepared Au nanorods were used as seeds for the overgrowth of thin shells of gold, silver, and palladium by using a mild reducing agent, ascorbic acid, in the presence of surfactants at ambient condition. The unique crystal facets of the starting nanorods results in anisotropic crystal overgrowth. The overgrowth rates along different crystallographical directions can be further regulated by adding foreign ions or by using different metal reduction methods. This overgrowth study provides insights on how different metal ions could be reduced preferentially on different Au nanorod surfaces, so that the composition, aspect ratio, shape, and facet of the resulting nanostructures can be rationally tuned. These surfactant-stabilized bimetallic Au(core)M(shell) (M=Au, Ag, Pd) nanorod colloids might serve as better substrates in surface-enhanced Raman spectroscopy as well as exhibiting enhanced catalytic properties.  相似文献   

7.
Steady state and ultrafast transient absorption studies have been carried out for gold, nickel, and palladium high aspect ratio nanorods. For each metal, nanorods were fabricated by electrochemical deposition into approximately 6 microm thick polycarbonate templates. Two nominal pore diameters(10 and 30 nm, resulting in nanorod diameters of about 40 and 60 nm, respectively) were used, yielding nanorods with high aspect ratios (>25). Static spectra of nanorods of all three metals reveal both a longitudinal surface plasmon resonance (SPR(L)) band in the mid-infrared as well as a transverse band in the visible for the gold and larger diameter nickel and palladium nanorods. The appearance of SPR(L) bands in the infrared for high aspect ratio metal nanorods and the trends in their maxima for the different aspect ratios and metals are consistent with calculations based on the Gans theory. For the gold and nickel samples, time resolved studies were performed with a subpicosecond resolution using 400 nm excitation and a wide range of probe wavelengths from the visible to the mid-IR as well as for infrared excitation (near 2000 cm(-1)) probed at 800 nm. The dynamics observed for nanorods of both metals and both diameters include transients due to electron-phonon coupling and impulsively excited coherent acoustic breathing mode oscillations, which are similar to those previously reported for spherical and smaller rod-shaped gold nanoparticles. The dynamics we observe are the same within the experimental uncertainty for 400 nm and infrared (5 microm) excitation probed at 800 nm. The transient absorption using 400 nm excitation and 800 nm probe pulses of the palladium nanorods also reveal coherent acoustic oscillations. The results demonstrate that the dynamics for high aspect ratio metal nanorods are similar to those for smaller nanoparticles.  相似文献   

8.
The synthesis of short aspect ratio gold nanorods using gamma radiation method by incorporating cetyltrimethyl ammonium bromide (CTAB) as a directing agent is reported in this communication. The radiolysis of Au+, in the presence of 2.5 nm Au seeds and 0.1 mol dm?3 isopropanol, results in the formation of Au spheres as evident from surface plasmon resonance band at 527 nm. However, by carrying out radiolysis at lower radiation dose rate, short aspect gold nanorods having surface plasmon bands at 513 and 670 nm have been prepared. The formation of rods at low radiation dose rate was observed to be governed by the kinetics of particle growth. The TEM of as-synthesized nanoparticles confirmed the formation of uniform sized nanorods having an aspect of 2.4.  相似文献   

9.
This paper describes the growth of gold and silver nanomaterials from their corresponding colloidal seeds on glass substrates. The glass substrates were treated with 3-mercaptopropyltrimethoxysilane (MPTMS) and then with gold or silver nanoparticle seeds (AuNPSs or AgNPSs) at different concentrations. After separately immersing the thus-prepared MPTMS-AuNPS and MPTMS-AgNPS glass substrates in aqueous solutions containing cetyltrimethylammonium bromide, ascorbic acid, and gold or silver ions, we obtained Au and Ag nanomaterials of different sizes and shapes, which we characterized through scanning electron microscopy (SEM) and dark-field microscopy (DFM). At 0.001x concentrations AuNPSs and AgNPSs (i.e., 1000-fold-diluted solutions of the as-prepared samples), Au and Ag nanomaterials having 1.36 and 5.21 mum lengths and aspect ratios of 11 and 24 were prepared in yields of 27% and 54%, respectively. Scattering spectra of the thus-prepared single AuNRs and AgNRs revealed that the uniformity in the shape of the AuNRs was greater than that of the AgNRs. In addition, we demonstrate the preparation (using a laboratory-made synthesis system) and characterization (through DFM measurements) of Au nanomaterials, including AuNRs, from five AuNPS solutions of different concentrations on a single glass substrate.  相似文献   

10.
Photochemical synthesis of gold nanorods   总被引:18,自引:0,他引:18  
Gold nanorods have been synthesized by photochemically reducing gold ions within a micellar solution. The aspect ratio of the rods can be controlled with the addition of silver ions. This process reported here is highly promising for producing uniform nanorods, and more importantly it will be useful in resolving the growth mechanism of anisotropic metal nanoparticles due to its simplicity and the relatively slow growth rate of the nanorods.  相似文献   

11.
We report a simple synthesis of Au-Ag core-shell nanorods (NRs) under alkaline conditions (pH 8.0-10.0) from silver and ascorbate ions using gold nanorods (GNRs) as the seeds. The silver ions that are reduced by the ascorbate ions become deposited on the surfaces of the GNRs to form differently dumbbell-shaped Au-Ag core-shell NRs and nanoparticles, depending on the pH and the concentration of silver ions. The longitudinal plasmon absorbance bands of the Au-Ag core-shell NRs are stronger and appear at shorter wavelengths than those for the original GNRs. We confirmed the formation of Au-Ag core-shell NRs by both energy-dispersive X-ray spectrometry and inductively coupled plasma mass spectrometry measurements, which indicate that the 109Ag/197Au ratios are 0.046, 0.085, and 0.097 at pH 8.0, 9.0, and 10.0, respectively. The transmission electron microscopy measurements show that the Au-Ag core-shell NRs are monodispersed (>90%).  相似文献   

12.
Reproducible fabrication of concave cubic gold nanoparticles with precise control over size, concaveness, and aspect ratio is important because the nanoscale structural characteristics can influence their plasmonic and catalytic properties. However, this is particularly challenging because the number of synthetic parameters involved in the fabrication strategy adds complexity to the reaction mechanism. Here, we introduce a simplified seed-mediated method and uncover the unknown conceptual insights on how the different halides and their concentration influence the surface structure and stability of underpotential silver monolayer deposited on the high energy facets of nanoparticles. The results reveal that adding Br? and I? ions to growth solution offers a predominant way to control the reaction kinetics and engineering nanoparticles with a predefined size, morphology, concaveness, aspect ratio, and plasmonic properties. Using spectroscopy and microscopy techniques, we shed new light on the reaction kinetics of concave cubic gold nanoparticles using the combined influence of silver underpotential deposition and halides. The strategy developed here can be expanded to fabricate gold nanoparticles of complex geometries. The results from our electromagnetic calculations suggest that the self-assembled superstructure of concave cubic gold nanoparticles can be more appealing for developing an ultra-sensitive sensing platform than to self-assembled superstructures of truncated cubic gold nanoparticles.  相似文献   

13.
采用三氯化铁选择性刻蚀法获得了预定长径比的金纳米棒.相比于晶种生长法,三氯化铁选择性刻蚀法可以更加简便快捷地调控金纳米棒形貌.以三氯化铁为刻蚀剂的刻蚀反应优先发生在金纳米棒尖端,这是因为金纳米棒尖端反应活性更高且表面活性剂钝化作用更弱.通过控制刻蚀反应时间及刻蚀剂浓度,可以精确调控金纳米棒的长径比.实验结果表明,增加刻蚀剂浓度、卤素离子浓度以及升高反应温度可以加快刻蚀反应速率.进一步讨论了金属离子的刻蚀作用机理.  相似文献   

14.
The optical properties of metal nanoparticles are quite different from those of the bulk materials mainly due to the collective oscillations of their conduction electrons known as the surface plasmon resonance(SPR),which is strongly dependent on the particle shape and size,and the dielectric properties of the local environment where the nanoparticles are embedded in. Based on the discrete dipole approximation(DDA)method,we studied the optical properties of silver nanorods with different aspect ratios in some special dielectric environment including air,water,acetone,methylene chloride and pyridine. The DDA simulation of the ultraviolet-visible(UV-Vis)extinction spectra of silver nanorods with varying aspect ratios shows the plasmons absorption splits into two bands corresponding to the oscillation of the free electrons along and perpendicular to the long axis of the rods. The transverse mode shows almost a fixed resonance at about 350 nm while the resonance of the longitudinal mode is red-shifted and strongly depends on the aspect ratio of the nanorods. An empirical formula was given to predict the peak position of the longitudinal palsmon band of the silver nanorods with different aspect ratios in the air. The calculation result also shows the maximum of the longitudinal plasmon band of a silver nanorod with a fixed aspect ratio depends on the medium dielectric constant in a linear way. The TEM image and corresponding UV-Vis extinction spectrum of silver nanosphere and nanorods synthesized by our lab are in good agreement with the DDA simulation results.  相似文献   

15.
Si S  Leduc C  Delville MH  Lounis B 《Chemphyschem》2012,13(1):193-202
A one-step, surfactant-assisted, seed-mediated method has been utilized for the growth of short gold nanorods with reasonable yield by modifying an established synthesis protocol. Among the various parameters that influence nanorod growth, the impact of the bromide counterion has been closely scrutinized. During this study it has been shown that, irrespective of its origin, the bromide counterion [cetyltrimethylammonium bromide (CTAB) or NaBr] plays a crucial role in the formation of nanorods in the sense that there is a critical [Br(-)]/[Au(3+)] ratio (around 200) to achieve nanorods with a maximum aspect ratio. Beyond this value, bromide can be considered as a poisoning agent unless shorter nanorods are required. The use of AgNO(3) helps in symmetry breaking for gold nanorod growth, whereas the bromide counterion controls the growth kinetics by selective adsorption on the facets of the growth direction. Thus, a proper balance between bromide ions and gold cations is also one of the necessary parameters for controlling the size of the gold nanorods; this has been discussed thoroughly. The results have been discussed based on their absorption spectra and finally shape evolution has been confirmed by TEM. Due to their efficient absorption in the near-IR region, these short nanorods were used in photothermal imaging of living COS-7 cells with improved signal-to-background ratios.  相似文献   

16.
Here, we describe a one-step synthesis of silver nanoparticles, nanorods, and nanowires on DNA network surface in the absence of surfactant. Silver ions were first adsorbed onto the DNA network and then reduced in sodium borohydride solution. Silver nanoparticles, nanorods, and nanowires were formed by controlling the size of pores of the DNA network. The diameter of the silver nanoparticles and the aspect ratio of the silver nanorods and nanowires can be controlled by adjusting the DNA concentration and reduction time.  相似文献   

17.
单纳米颗粒作为信号感应单元在化学与生物传感应用中已引起广泛关注.本文通过暗场显微成像(iDFM)研究了不同径向比金纳米棒的光散射性质.将iDFM与扫描电子显微镜(SEM)结合表征种子生长法制备的金纳米棒,结果发现,因局域表面等离子体共振而展示出的红色散射光随单个金纳米棒的径向比增大逐渐红移,且金纳米棒对其周围介质折光率(RI)变化的敏感程度随径向比增大而增大.这一结果对设计高灵敏的生物纳米传感器、提高分析检测的灵敏度具有很好的指导意义.  相似文献   

18.
Growth of gold nanorods and bipyramids using CTEAB surfactant   总被引:1,自引:0,他引:1  
Gold nanorods and bipyramids have been synthesized using the seed-mediated approach in aqueous cetyltriethylammonium bromide (CTEAB) solutions in the presence of silver nitrate. Gold nanoparticle seeds that are stabilized with either CTEAB or sodium citrate have been used. The use of the CTEAB-stabilized seeds gives gold nanorods in high yield in one step with the longitudinal plasmon wavelength ranging from 750 to 1030 nm, depending on the amount of the seeds. The longitudinal plasmon wavelength can be extended to 1100 nm by the use of a two-step growth method. The growth of gold nanorods in CTEAB solutions takes 5-10 h, more than 5 times slower than that in cetyltrimethylammonium bromide solutions at the same concentration of surfactants. The use of the citrate-stabilized seeds gives both gold bipyramids and a small percentage of gold nanorods. The longitudinal plasmon wavelength of the bipyramids is tunable from 700 to 1100 nm by varying the amount of the citrate-stabilized seeds. The growth of gold bipyramids takes more than 1 day. Transmission electron microscopy characterizations reveal that the gold nanorods grown from both types of gold nanoparticle seeds are single-crystalline and that the gold bipyramids are penta-twinned.  相似文献   

19.
We describe a very simple, two-step synthetic method to prepare gold nanorods with extremely high aspect ratios (> 20) and average lengths of more than 1000 nm. The method is based on a seed-mediated growth in presence of the surfactant cetyltrimethylammonium bromide. The length and aspect ratios of the nanorods can be manipulated by varying the surfactant concentration.  相似文献   

20.
The crystal structure and growth mechanism of silver nanorods prepared by a seed-mediated surfactant method using the cationic surfactant cetyltrimethylammonium tosylate (CTAT) and its wormlike micelles are characterized by conventional and high-resolution transmission electron microscopy. Depending on the nanorod orientations, two types of electron diffraction patterns are obtained from a truncated decahedral structure consisting of five crystal units packing along [111] twining planes with five [111] planes on each end and five circumferential [001] side surfaces parallel to a <110> longitudinal direction. High-resolution images of the nanorods and the corresponding Fourier transform patterns confirm the results from the morphological and diffraction analyses. The silver nanorods grow only from multiply twinned decahedral seeds, and the high selectivity of surfactant attachment results in a barrier to the transfer of silver atoms from the solution to the circumferential [100] planes. Blockage of circumferential growth causes the aspect ratio of the rod to grow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号