首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Compound‐specific stable carbon isotope analysis by gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) is an important method for the determination of the 13C/12C ratios of biomolecules such as steroids, for a wide range of applications. However, steroids in their natural form exhibit poor chromatographic resolution, while derivatisation adds carbon thereby corrupting the stable isotopic composition. Hydropyrolysis with a sulphided molybdenum catalyst has been shown to defunctionalise the steroids, while leaving their carbon skeleton intact, allowing for the accurate measurement of carbon isotope ratios. The presence of double bonds in unsaturated steroids such as cholesterol resulted in significant rearrangement of the products, but replacing the original catalyst system with one of platinum results in higher conversions and far greater selectivity. The improved chromatographic performance of the products should allow GC/C/IRMS to be applied to more structurally complex steroid hormones and their metabolites. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
A detailed procedure for the analysis of exogenous dehydroepiandrosterone (DHEA) in urine by gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) has been established for detecting doping with DHEA. The average delta-value (parts per thousand difference of (13)C/(12)C ratio from the isotope ratio standard) of 26 synthetic steroids commercially available was -30.1 +/- 2.6, and was significantly lower than that of human endogenous DHEA in urine of the world class athletes who had participated in the XVIIth Olympic Winter Games (-20.3 +/- 2.1, n = 446). Although large inter-individual variations of urinary DHEA excretion were observed following a single oral administration of 50 mg of DHEA, no significant inter-individual difference was found when the excretion of exogenous DHEA was monitored in terms of delta-values using GC/C/IRMS; the minimum delta-values were observed around 6-8 h after the administration, and the values returned to the base level at over 72 h after the dosing. Thus, the deviations in delta-values of DHEA and its diol metabolites are considered to be conclusive evidence for detecting doping with DHEA. Some successful cases of detection of doping with DHEA from athletes are also reported.  相似文献   

3.
The confirmation by GC/C/IRMS of the exogenous origin of pseudo-endogenous steroids from human urine samples requires extracts of adequate purity. A strategy based on HPLC sample purification prior to the GC/C/IRMS analysis of human urinary endogenous androgens (i.e. testosterone, androsterone and/or androstenediols), is presented. A method without any additional derivatization step is proposed, allowing to simplify the urine pretreatment procedure, leading to extracts free of interferences permitting precise and accurate IRMS analysis, without the need of correcting the measured delta values for the contribution of the derivatizing agent. The HPLC extracts were adequately combined to both reduce the number of GC/C/IRMS runs and to have appropriate endogenous reference compounds (ERC; i.e. pregnanediol, 11-keto-etiocholanolone) on each GC–IRMS run. The purity of the extracts was assessed by their parallel analysis by gas chromatography coupled to mass spectrometry, with GC conditions identical to those of the GC/C/IRMS assay. The method has been validated according to ISO17025 requirements (within assay precision below 0.3 ‰ 13C delta units and between assay precision below 0.6 ‰ 13C delta units for most of the compounds investigated) fulfilling the World Anti-Doping Agency requirements.  相似文献   

4.
The detection of exogenous testosterone in bovine urine was investigated by using gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). The carbon isotopic ratio measurement of epitestosterone, etiocholanolone (testosterone metabolite) and DHEA (testosterone precursor) in female bovine urines after testosterone enanthate administration was carried out. An important modification in the 13C/12C ratio of testosterone metabolites was observed, such that significant differences between precursor and metabolites of testosterone occurred until three weeks after intramuscular administration of testosterone enanthate. The factors influencing the 13C/12C of endogenous steroids were studied especially through cattle feeding and age. The DHEA mean delta13C value was found to vary between -25 and -26/1000 when hay and concentrate diet were used for fattening. On the other hand the delta13C value observed when maize silage was used increased to -20/1000. Testosterone metabolites showed the same delta13C increase as their precursor. Moreover, we observed a clear relationship between age and efficiency of misuse determination. Indeed, because of the lower concentration of natural hormones in young animals, the contribution of exogenous molecules increases significantly compared with older subjects. Consequently, demonstration of administration is easier to achieve in calves than in mature animals.  相似文献   

5.
A detailed procedure for the analysis of exogenous hydrocortisone and cortisone in urine by gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) is proposed. As urinary levels of hydrocortisone are rather low for GC/C/IRMS analysis, the focus is on the main corticosteroid metabolites, tetrahydrocortisone (THE) and tetrahydrocortisol (THF). Following different solid phase extraction purifications, THE and THF are oxidized to 5beta-androstanetrione before analysis by GC/C/IRMS. Significant differences in delta(13)C per thousand values of synthetic natural corticosteroids and endogenous human corticosteroids have been observed. Therefore, a positive criterion, to detect exogenous administration of synthetic corticosteroids in anti-doping control, is proposed.  相似文献   

6.
The use of stable isotope labelled glucose provides insight into glucose metabolism. The 13C‐isotopic enrichment of glucose is usually measured by gas chromatography/mass spectrometry (GC/MS) or gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). However, in both techniques the samples must be derivatized prior to analysis, which makes sample preparation more labour‐intensive and increases the uncertainty of the measured isotopic composition. A novel method for the determination of isotopic enrichment of glucose in human plasma using liquid chromatography/isotope ratio mass spectrometry (LC/IRMS) has been developed. Using this technique, for which hardly any sample preparation is needed, we showed that both the enrichment and the concentration could be measured with very high precision using only 20 µL of plasma. In addition, a comparison with GC/MS and GC/IRMS showed that the best performance was achieved with the LC/IRMS method making it the method of choice for the measurement of 13C‐isotopic enrichment in plasma samples. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
The use of anabolic agents in food producing animals is prohibited within the EU since 1988 (96/22/EC directive). The control of the illegal use of natural steroid hormones in cattle is still an exciting analytical challenge as far as no definitive method and non-ambiguous analytical criteria are available. The ability of gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) to demonstrate the administration of 17beta-estradiol to bovine has been investigated in this paper. By comparison of 13C/12C isotopic ratio of main urinary estradiol metabolite, i.e. 17alpha-estradiol, with two endogenous reference compounds (ERCs), i.e. dehydroepiandrosterone (DHEA) and 5-androstene-3beta,17alpha-diol, the differentiation of estradiol metabolite origin, either endogenous or exogenous, has been proved to be achievable. After treatment, the delta(13)C(VPDB)-values of 17alpha-estradiol reached -27 per thousand to -29 per thousand, whereas delta13CVPDB-values of DHEA remained between -13 per thousand and -20 per thousand depending on the diet, maize and grass, respectively. A significant difference of delta13CVPDB between ERCs and 17alpha-estradiol was measurable over a period of 2 weeks after estradiol ester administration to the animal.  相似文献   

8.
The use of anabolic agents in food-producing animals has been prohibited within the EU since 1988. The control of the illegal use of natural steroid hormones in cattle is still an exciting analytical challenge as no definitive method and nonambiguous analytical criteria are available. We have used gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) to demonstrate the administration of cortisol to cattle. The method consisted of an efficient combination between OASIS HLB solid-phase extraction (SPE), oxidation, SiOH SPE and semi-preparative high-performance liquid chromatography (HPLC) for glucocorticoid purification. By comparison of the (13)C/(12)C isotopic ratio of the oxidised product of cortisol, i.e. 5 beta-androstane-3,11,17-trione (5 beta AAT), with an endogenous reference compound (ERC), dehydroepiandrosterone (DHEA), the differentiation of cortisol metabolite origin, either endogenous or exogenous, has been achieved. After treatment of an animal, the delta(13)C(VPDB) values of 5 beta AAT reached -30 to -32 per thousand, whereas the delta(13)C(VPDB) values of DHEA remained at -25 per thousand. A significant difference in the delta(13)C(VPDB) values between DHEA and 5 beta AAT was measurable over a period of 3 days after a single administration of cortisol to the animal.  相似文献   

9.
The development and application of a combined gas chromatography/thermal conversion/isotope ratio mass spectrometry (GC/TC/IRMS) method for D/H ratio determination of endogenous urinary steroids are presented. The key element in sample preparation was the consecutive cleanup with high‐performance liquid chromatography of initially native and subsequently acetylated steroids. This strategy enabled sufficient cleanup off all target analytes for determination of their respective D/H values. Ten steroids (11β‐hydroxyandrosterone, 5α‐androst‐16‐en‐3α‐ol, pregnanediol, androsterone, etiocholanolone, testosterone, epitestosterone, 5α‐androstan‐3α,17β‐diol, 5β‐androstan‐3α,17β‐diol and dehydroepiandrosterone) were measured from a single urine specimen. Depending on the biological background, the determination limit for all steroids ranged from 10 to 15 ng/mL for a 20 mL specimen. The method was validated by application of linear mixing models on each steroid and covered repeatability and reproducibility. The specificity of the procedure was ensured by gas chromatography/mass spectrometry (GC/MS) analysis of the sample using equivalent chromatographic conditions to those employed in the GC/TC/IRMS measurement. Within the sample preparation, no isotopic fractionation was observed, and no amount‐dependent shift of the D/H ratios during the measurement was noticed. Possible memory effects occurring during IRMS measurements were corrected by applying a simple rule of proportion. In order to determine the naturally occurring D/H ratios of all implemented steroids, a population of 18 male subjects was analyzed. Relevant mean Δ values among selected steroids were calculated which allowed us to study the metabolic pathways and production sites of all the implemented steroids with additional consideration of the corresponding 13C/12C ratios. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Quantifying the concentrations of organics such as phospholipid fatty acids (PLFAs) and n‐alkanes and measuring their corresponding 13 C/12 C isotope ratios often involves two separate analyses; (1) quantification by gas chromatography flame ionisation detection (GC‐FID) or gas chromatography/mass spectrometry (GC/MS), and (2) 13 C‐isotope abundance analysis by gas chromatography/combustion/isotope ratio mass spectrometry (GC‐C‐IRMS). This requirement for two separate analyses has obvious disadvantages in terms of cost and time. However, there is a history of using the data output of isotope ratio mass spectrometers to quantify various components; including the N and C concentrations of solid materials and CO2 concentrations in gaseous samples. Here we explore the possibility of quantifying n‐alkanes extracted from sheeps' faeces and fatty acid methyl esters (FAMEs) derivatised from PLFAs extracted from grassland soil, using GC‐C‐IRMS. The results were compared with those from GC‐FID analysis of the same extracts. For GC‐C‐IRMS the combined area of the masses for all the ions (m/z 44, 45 and 46) was collected, referred to as 'area all', while for the GC‐FID analysis the peak area data were collected. Following normalisation to a common value for added internal standards, the GC‐C‐IRMS 'area all' values and the GC‐FID peak area data were directly compared. Strong linear relationships were found for both n‐alkanes and FAMEs. For the n‐alkanes the relationships were 1:1 while, for the FAMEs, GC‐C‐IRMS overestimated the areas relative to the GC‐FID results. However, with suitable reference material 1:1 relationships were established. The output of a GC‐C‐IRMS system can form the basis for the quantification of certain organics including FAMEs and n‐alkanes. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
A reference method to accurately define kinetics in response to the ingestion of glucose in terms of total, exogenous and endogenous glucose is to use stable‐isotope‐labelled compounds such as 2H and 13C glucose followed by gas chromatography/mass spectrometry (GC/MS) and gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) analysis. The use of the usual pentaacetyl (5Ac) derivative generates difficulties in obtaining accurate and reproducible results due to the two chromatographic peaks for the syn and anti isomers, and to the isotopic effect occurring during acetylation. Therefore, the pentaacetylaldononitrile derivative (Aldo) was validated for both isotopes, and compared with the 5Ac derivative. A correction factor including carbon atom dilution (stoichiometric equation) and the kinetic isotopic effect (KIE) was determined. Analytical validation results for the 2H GC/MS and 13C GC/C/IRMS measurements produced acceptable results with both derivatives. When 2H enrichments of plasma samples were ≤1 mol % excess (MPE), the repeatability (RSDAldo Intra assay and Intra day <0.94%, RSD5Ac Intra assay and Intra day <3.29%), accuracy (Aldo <3.4%, 5Ac <29.0%), and stability of the derivatized samples were significantly better when the Aldo derivatives of the plasma samples were used (p < 0.05). When the glucose kinetics were assessed in nine human subjects, after glucose ingestion, the plasma glucose 2H enrichments were identical with both derivatives, whereas the 13C enrichments needed a correction factor to fit together. Due to KIE variation, this correction factor was not constant and had to be calculated for each batch of analyses, to obtain satisfactory results. Mean quantities of exogenous glucose exhibit marked difference (20.9 ± 1.3g (5Ac) vs. 26.7 ± 2.5g (Aldo)) when calculated with stoichiometric correction, but fit perfectly when calculated after application of the correction factor (22.1 ± 1.3g (5Ac) vs. 22.9 ± 1.9g (Aldo)). Finally, the pentaacetylaldononitrile derivative, used here in GC/C/IRMS for the first time, enables measurement of 2H and 13C enrichments in plasma glucose with a single sample preparation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
In the present study, different MS methods for the determination of human muscle protein fractional synthesis rate (FSR) using [ring‐13C6]phenylalanine as a tracer were evaluated. Because the turnover rate of human skeletal muscle is slow, only minute quantities of the stable isotopically labeled amino acid will be incorporated within the few hours of a typical laboratory experiment. GC combustion isotope ratio MS (GC‐C‐IRMS) has thus far been considered the ‘gold’ standard for the precise measurements of these low enrichment levels. However, advances in liquid chromatography‐tandem MS (LC‐MS/MS) and GC‐tandem MS (GC‐MS/MS) have made these techniques an option for human muscle FSR measurements. Human muscle biopsies were freeze dried, cleaned, and hydrolyzed, and the amino acids derivatized using either N‐acetyl‐n‐propyl, phenylisothiocyanate, or N‐methyl‐N‐(tert‐butyldimethylsilyl)trifluoroacetamide (MTBSTFA) for GC‐C‐IRMS, LC‐MS/MS, and GC‐MS/MS analysis, respectively. A second derivative, heptafluorobutyric acid (HFBA), was also used for GC‐MS/MS analysis as an alternative for MTBSTFA. The machine reproducibility or the coefficients of variation for delta tracer‐tracee‐ratio measurements (delta tracer‐tracee‐ratio values around 0.0002) were 2.6%, 4.1%, and 10.9% for GC‐C‐IRMS, LC‐MS/MS, and GC‐MS/MS (MTBSTFA), respectively. FSR determined with LC‐MS/MS compared well with GC‐C‐IRMS and so did the GC‐MS/MS when using the HFBA derivative (linear fit Y = 1.08 ± 0.10, X + 0.0049 ± 0.0061, r = 0.89 ± 0.01, P < 0.0001). In conclusion, (1) IRMS still offers the most precise measurement of human muscle FSR, (2) LC‐MS/MS comes quite close and is a good alternative when tissue quantities are too small for GC‐C‐IRMS, and (3) If GC‐MS/MS is to be used, then the HFBA derivative should be used instead of MTBSTFA, which gave unacceptably high variability. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
The stable carbon isotope compositions of tetrols, erythritol and threitol were determined by gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). Using four tetrols with various δ13C values derivatized by methylboronic acid, the carbon isotope analysis method achieved excellent reproducibility and high accuracy. There was no carbon isotopic fractionation during the derivatization processes. The differences in the carbon isotopic compositions of methylboronates between the measured and calculated ranged from ?0.20 to 0.12‰, within the specification of the GC/C/IRMS system. It was demonstrated that δ13C values of tetrols could be calculated by a simple mass balance equation between tetrols, methylboronic acid, and methylboronates. The analogous 2‐methyltetrols, marker compounds of photooxidation products of atmospheric isoprene, should have similar behavior using the same derivatization reagent. This method may provide insight on sources and sinks of atmospheric isoprene. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
Precise measurement of low enrichment of stable isotope labeled amino‐acid tracers in tissue samples is a prerequisite in measuring tissue protein synthesis rates. The challenge of this analysis is augmented when small sample size is a critical factor. Muscle samples from human participants following an 8 h intravenous infusion of L‐[ring‐13C6]phenylalanine and a bolus dose of L‐[ring‐13C6]phenylalanine in a mouse were utilized. Liquid chromatography tandem mass spectrometry (LC/MS/MS), gas chromatography (GC) MS/MS and GC/MS were compared to the GC‐combustion‐isotope ratio MS (GC/C/IRMS), to measure mixed muscle protein enrichment of [ring‐13C6]phenylalanine enrichment. The sample isotope enrichment ranged from 0.0091 to 0.1312 molar percent excess. As compared with GC/C/IRMS, LC/MS/MS, GC/MS/MS and GC/MS showed coefficients of determination of R2 = 0.9962 and R2 = 0.9942, and 0.9217 respectively. However, the precision of measurements (coefficients of variation) for intra‐assay are 13.0%, 1.7%, 6.3% and 13.5% and for inter‐assay are 9.2%, 3.2%, 10.2% and 25% for GC/C/IRMS, LC/MS/MS, GC/MS/MS and GC/MS, respectively. The muscle sample sizes required to obtain these results were 8 µg, 0.8 µg, 3 µg and 3 µg for GC/C/IRMS, LC/MS/MS, GC/MS/MS and GC/MS, respectively. We conclude that LC/MS/MS is optimally suited for precise measurements of L‐[ring‐13C6]phenylalanine tracer enrichment in low abundance and in small quantity samples. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
A new derivatisation reaction applied to the analysis of steroids by gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) was studied. The trimethylsilylated steroids were characterised by well-resolved chromatographic signals, no peak tailing, reproducible 13C/12C measurements (0.32 per thousand, n = 28), good signal-to-noise ratio and absolute intensity (5 x 10(-9) A, 20 ng), and a slow degradation of copper oxide pellets in the combustion furnace. In addition, two new metabolites and one precursor of testosterone in bovine have been brought into consideration and used for GC/C/IRMS measurements, namely, 3beta-hydroxy-5alpha-androstan-17-one (epiandrosterone), 3beta,17alpha-dihydroxy-5alpha-androstane, and 3beta,17alpha-dihydroxy-5-androstene. The new findings have been applied to an elimination study in bovine of testosterone metabolites after an intramuscular injection of testosterone enanthate. Significant differences (up to 4 per thousand) between testosterone metabolites and precursor were detectable at least three weeks after administration.  相似文献   

16.
Amino sugars have been used as biomarkers to assess the relative contribution of dead microbial biomass of different functional groups of microorganisms to soil carbon pools. However, little is known about the dynamics of these compounds in soil. The isotopic composition of individual amino sugars can be used as a tool to determine the turnover of these compounds. Methods to determine the δ13C of amino sugars using gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) have been proposed in literature. However, due to derivatization, the uncertainty on the obtained δ13C is too high to be used for natural abundance studies. Therefore, a new high‐performance liquid chromatography/isotope ratio mass spectrometry (HPLC/IRMS) methodology, with increased accuracy and precision, has been developed. The repeatability on the obtained δ13C values when pure amino sugars were analyzed were not significantly concentration‐dependent as long as the injected amount was higher than 1.5 nmol. The δ13C value of the same amino sugar spiked to a soil deviated by only 0.3‰ from the theoretical value. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Gaseous membrane permeation (MP) technologies have been combined with continuous‐flow isotope ratio mass spectrometry for on‐line δ13C measurements. The experimental setup of membrane permeation‐gas chromatography/combustion/isotope ratio mass spectrometry (MP‐GC/C/IRMS) quantitatively traps gas streams in membrane permeation experiments under steady‐state conditions and performs on‐line gas transfer into a GC/C/IRMS system. A commercial polydimethylsiloxane (PDMS) membrane sheet was used for the experiments. Laboratory tests using CO2 demonstrate that the whole process does not fractionate the C isotopes of CO2. Moreover, the δ13C values of CO2 permeated on‐line give the same isotopic results as off‐line static dual‐inlet IRMS δ13C measurements. Formaldehyde generated from aqueous formaldehyde solutions has also been used as the feed gas for permeation experiments and on‐line δ13C determination. The feed‐formaldehyde δ13C value was pre‐determined by sampling the headspace of the thermostated aqueous formaldehyde solution. Comparison of the results obtained by headspace with those from direct aqueous formaldehyde injection confirms that the headspace sampling does not generate isotopic fractionation, but the permeated formaldehyde analyzed on‐line yields a 13C enrichment relative to the feed δ13C value, the isotopic fractionation being 1.0026 ± 0.0003. The δ13C values have been normalized using an adapted two‐point isotopic calibration for δ13C values ranging from ?42 to ?10‰. The MP‐GC/C/IRMS system allows the δ13C determination of formaldehyde without chemical derivatization or additional analytical imprecision. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
Accurate determinations of stable isotope ratios require a calibration using at least two reference materials with different isotopic compositions to anchor the isotopic scale and compensate for differences in machine slope. Ideally, the δ values of these reference materials should bracket the isotopic range of samples with unknown δ values. While the practice of analyzing two isotopically distinct reference materials is common for water (VSMOW‐SLAP) and carbonates (NBS 19 and L‐SVEC), the lack of widely available organic reference materials with distinct isotopic composition has hindered the practice when analyzing organic materials by elemental analysis/isotope ratio mass spectrometry (EA‐IRMS). At present only L‐glutamic acids USGS40 and USGS41 satisfy these requirements for δ13C and δ15N, with the limitation that L‐glutamic acid is not suitable for analysis by gas chromatography (GC). We describe the development and quality testing of (i) four nicotine laboratory reference materials for on‐line (i.e. continuous flow) hydrogen reductive gas chromatography‐isotope ratio mass‐spectrometry (GC‐IRMS), (ii) five nicotines for oxidative C, N gas chromatography‐combustion‐isotope ratio mass‐spectrometry (GC‐C‐IRMS, or GC‐IRMS), and (iii) also three acetanilide and three urea reference materials for on‐line oxidative EA‐IRMS for C and N. Isotopic off‐line calibration against international stable isotope measurement standards at Indiana University adhered to the ‘principle of identical treatment’. The new reference materials cover the following isotopic ranges: δ2Hnicotine ?162 to ?45‰, δ13Cnicotine ?30.05 to +7.72‰, δ15Nnicotine ?6.03 to +33.62‰; δ15Nacetanilide +1.18 to +40.57‰; δ13Curea ?34.13 to +11.71‰, δ15Nurea +0.26 to +40.61‰ (recommended δ values refer to calibration with NBS 19, L‐SVEC, IAEA‐N‐1, and IAEA‐N‐2). Nicotines fill a gap as the first organic nitrogen stable isotope reference materials for GC‐IRMS that are available with different δ15N values. Comparative δ13C and δ15N on‐line EA‐IRMS data from 14 volunteering laboratories document the usefulness and reliability of acetanilides and ureas as EA‐IRMS reference materials. Published in 2009 by John Wiley & Sons, Ltd.  相似文献   

19.
Studies have shown that the administration of androstenedione (ADIONE) significantly increases the urinary ratio of testosterone glucuronide to epitestosterone glucuronide (T/E) – measured by gas chromatography/mass spectrometry (GC/MS) – in subjects with a normal (≈1) or naturally high (>1) initial values. However, the urinary T/E ratio has been shown not to increase in subjects with naturally low (<1) initial values. Such cases then rely on the detection of C6‐hydroxylated metabolites shown to be indicative of ADIONE administration. While these markers may be measured in the routine GC/MS steroid profile, their relatively low urinary excretion limits the use of gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) to specifically confirm ADIONE administration based on depleted 13C content. A mass spectrometry strategy was used in this study to identify metabolites of ADIONE with the potential to provide compound‐specific detection. C4‐hydroxylation was subsequently shown to be a major metabolic pathway following ADIONE administration, thereby resulting in urinary excretion of 4‐hydroxyandrostenedione (4OH‐ADIONE). Complementary analysis of 4OH‐ADIONE by GC/MS and GC/C/IRMS was used to confirm ADIONE administration. Copyright © 2008 Commonwealth of Australia. Published by John Wiley & Sons, Ltd.  相似文献   

20.
Since GHB (gamma-hydroxybutyric acid) is naturally produced in the human body, clinical and forensic toxicologists must be able to discriminate between endogenous levels and a concentration resulting from exposure. To suggest an alternative to the use of interpretative concentration cut-offs, the detection of exogenous GHB in urine specimens was investigated by means of gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). GHB was isolated from urinary matrix by successive purification on Oasis MCX and Bond Elute SAX solid-phase extraction (SPE) cartridges prior to high-performance liquid chromatography (HPLC) fractioning using an Atlantis dC18 column eluted with a mixture of formic acid and methanol. Subsequent intramolecular esterification of GHB leading to the formation of gamma-butyrolactone (GBL) was carried out to avoid introduction of additional carbon atoms for carbon isotopic ratio analysis. A precision of 0.3 per thousand was determined using this IRMS method for samples at GHB concentrations of 10 mg/L. The (13)C/(12)C ratios of GHB in samples of subjects exposed to the drug ranged from -32.1 to -42.1 per thousand, whereas the results obtained for samples containing GHB of endogenous origin at concentration levels less than 10 mg/L were in the range -23.5 to -27.0 per thousand. Therefore, these preliminary results show that a possible discrimination between endogenous and exogenous GHB can be made using carbon isotopic ratio analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号