首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new electrochemical PNA hybridization biosensor for detection of a 15‐mer sequence unique to p53 using indigo carmine (IC) as an electrochemical detector is described in this work. This genosensor is based on the hybridization of target oligonucleotide with its complementary probe immobilized on the gold electrode by self‐assembled monolayer formation. Because this label is electroactive in acidic medium, the interaction between IC and short sequence of p53 is studied by differential pulse voltammety (DPV) in 0.1 M H2SO4. The results of electrochemical impedance spectroscopy and cyclic voltammetry in the solution of [Fe(CN)6]3?/4? shows no breakage in PNA‐DNA duplex. A decrease in the voltammetric peak currents of IC is observed upon hybridization of the probe with the target DNA. The influence of probe concentration on effective discrimination against non‐complementary oligonucleotides is investigated and a concentration of 10?7 M is selected. The diagnostic performance of the PNA sensor is described and the detection limit is found to be 4.31×10?12 M.  相似文献   

2.
We assessed the abilities of wild p53 and mutant p53 proteins to interact with the consensus DNA-binding sequence using a MOSFET biosensor. This is the first report in which mutant p53 has been detected on the basis of DNA-protein interaction using a FET-type biosensor. In an effort to evaluate the performance of this protocol, we constructed the core domain of wild p53 and mutant p53 (R248W), which is DNA-binding-defective. After the immobilization of the cognate DNA to the sensing layer, wild p53 and mutant p53 were applied to the DNA-coated gate surface, and subsequently analyzed using a semiconductor analyzer. As a consequence, a significant up-shift in drain current was noted in response to wild p53, but not mutant p53, thereby indicating that sequence-specific DNA-protein interactions could be successfully monitored using a field-effect-based biosensor. These data also corresponded to the results obtained using surface plasmon resonance (SPR) measurements. Taken together, our results show that a FET-type biosensor might be promising for the monitoring of mutant p53 on the basis of its DNA-binding activity, providing us with very valuable insights into the monitoring for diseases, particularly those associated with DNA-protein binding events.  相似文献   

3.
A novel sensitive and simple electrochemical DNA sensor is reported for the determination of p53 tumor suppressor gene. A gold nanoparticle/graphene nanocomposite-modified glassy carbon electrode was prepared and methylene blue was used as the hybridization redox indicator. Scanning electron microscopic and electrochemical characterization demonstrated that the gold nanoparticles and graphene were present on the electrode. The resulting sensor provided suitable electrochemical response to the p53 tumor suppressor gene with a linear dynamic range from 0.1 to 1000?nM. The limit of detection was 0.012?nM. The sensor was able to differentiate a complete complementary DNA sequence, single-base mismatched DNA sequence, and a three-base mismatched DNA sequence. The precision of the device was satisfactory, with a relative standard deviation of 4.1% for 11 measurements. The combination of gold nanoparticles and a graphene nanocomposite provided enhanced capabilities for the determination of DNA for clinical applications.  相似文献   

4.
In this paper, we report a new PNA biosensor for electrochemical detection of point mutation or single nucleotide polymorphism (SNP) in p53 gene corresponding oligonucleotide based on PNA/ds-DNA triplex formation following hybridization of PNA probe with double-stranded DNA (ds-DNA) sample without denaturing the ds-DNA into single-stranded DNA (ss-DNA). As p53 gene is mutated in many human tumors, this research is useful for cancer therapy and genomic study. In this approach, methylene blue (MB) is used for electrochemical signal generation and the interaction between MB and oligonucleotides is studied by differential pulse voltammety (DPV). Probe-modified electrode is prepared by self-assembled monolayer (SAM) formation of thiolated PNA molecules on the surface of Au electrode. A significant increase in the reduction signal of MB following hybridization of the probe with the complementary double-stranded oligonucleotide (ds-oligonucleotide) confirms the function of the biosensor. The selectivity of the PNA sensor is investigated by non-complementary ds-oligonucleotides and the results support the ability of the sensor to detect single-base mismatch directly on ds-oligonucleotide. The influence of probe and ds-DNA concentrations on the effective discrimination against complementary sequence and point mutation is studied and the concentration of 10?6 M is selected as appropriate concentration. Diagnostic performance of the biosensor is described and the detection limit is found to be 4.15 × 10?12 M.  相似文献   

5.
This paper discusses a new electrochemical DNA hybridization sensing approach based on the detection of a linked enzyme label. In this method we employ enzyme that is attached to a tethered ssDNA oligomer on the surface and the target analyte is a complementary ssDNA oligomer that does not require any pre‐treatment. The advantage of using of enzyme label is in its amplification of the registration of the hybridization event due to the catalytic reaction facilitated in the process. One particular novelty is associated with the use of enzymes that directly communicate with the electrode surface thus allowing for minimizing the need of additional reagents in the assay. The electrochemical assay was demonstrated when using mixed self‐assembled monolayers from thiolated oligonucleotide and 6‐mercapto 1‐hexanol on gold surfaces. Horseradish peroxidase (HRP) is attached to the surface tethered oligonucleotide using streptavidin‐biotin chemistry, and the enzyme successfully established direct electron transfer (DET) with the electrode or mediated electron transfer (MET) using a mediator. Hybridization results in increasing the angle of contact between electrode and DNA and also the stiffness of the ds DNA, which results in displacing the enzyme away from the electrode surface, and thereby reducing the occurrence of direct electron transfer between the enzyme and the electrode. The cyclic voltammetry showed a clear distinction in response between the complete complementary sequence and the two‐base mismatch sequence. Ellipsometric measurements show that the thickness of the thiol modified oligonucleotide on gold surfaces changes before and after hybridization for the complementary sequence, where as a minimal change in thickness was observed for the noncomplementary sequence. The model target analyte in this study was TP53 gene where a specific mutation is a marker for a list of cancers. Mutations of the TP53 gene have been demonstrated in tumors of the colon, breast, lung, ovary, bladder, and many other organs. Analysis of p53 mutations may provide useful information for the diagnosis, prognosis and therapy of cancer.  相似文献   

6.
In the present work a sensitive and selective electrochemical sensor was fabricated based on a glassy carbon electrode which has been modified with Pd nanoparticles loaded on Vulcan carbon/conductive polymeric ionic liquid composite nanofibers. The nanostructures were characterized by UV–Vis, FT-IR, FESEM, EDX and XRD techniques. The electrochemical study of the modified electrode, as well as its efficiency for the electrooxidation of tramadol was described in 0.1 M phosphate buffered solution (PBS) (pH 7.0) using cyclic voltammetry, linear sweep voltammetry, chronoamperometry and square wave voltammetry as diagnostic techniques. It has been found that application of the composite nanofibers result in a sensitivity enhancement and a considerable decrease in the anodic overpotential, leading to negative shifts about 200 mV in peak potential. The results exhibit a linear dynamic range from 0.05 μM to 200 μM and a detection limit of 0.015 μM for tramadol. Finally, the modified electrode was used for the determination of tramadol in pharmaceutical and biological samples.  相似文献   

7.
In this work a partially reduced graphene oxide (p‐RGO) modified carbon ionic liquid electrode (CILE) was prepared as the platform to fabricate an electrochemical DNA sensor, which was used for the sensitive detection of target ssDNA sequence related to transgenic soybean A2704‐12 sequence. The CILE was fabricated by using 1‐butylpyridinium hexafluorophosphate as the binder and then p‐RGO was deposited on the surface of CILE by controlling the electroreduction conditions. NH2 modified ssDNA probe sequences were immobilized on the electrode surface via covalent bonds between the unreduced oxygen groups on the p‐RGO surface and the amine group at the 5′‐end of ssDNA, which was denoted as ssDNA/p‐RGO/CILE and further used to hybridize with the target ssDNA sequence. Methylene blue (MB) was used as electrochemical indicator to monitor the DNA hybridization. The reduction peak current of MB after hybridization was proportional to the concentration of target A2704‐12 ssDNA sequences in the range from 1.0×10?12 to 1.0×10?6 mol/L with a detection limit of 2.9×10?13 mol/L (3σ). The electrochemical DNA biosensor was further used for the detection of PCR products of transgenic soybean with satisfactory results.  相似文献   

8.
Xie Y  Chen A  Du D  Lin Y 《Analytica chimica acta》2011,699(1):44-48
We reported a graphene-based immunosensor for electrochemical quantification of phosphorylated p53 on serine 15 (phospho-p5315), a potential biomarker of gamma-radiation exposure. The principle is based on sandwich immunoassay and the resulting immunocomplex is formed among phospho-p53 capture antibody, phospho-p5315 antigen, biotinylated phospho-p5315 detection antibody and horseradish peroxidase (HRP)-labeled streptavidin. The introduced HRP results in an electrocatalytic response to reduction of hydrogen peroxide in the presence of thionine. Graphene served as sensor platform not only promotes electron transfer, but also increases the surface area to introduce a large amount of capture antibody, thus increasing the detection sensitivity. The experimental conditions including blocking agent, immunoreaction time and substrate concentration have been optimized. Under the optimum conditions, the increase of response current is proportional to the phospho-p5315 concentration in the range of 0.2–10 ng mL−1, with the detection limit of 0.1 ng mL−1. The developed immunosensor exhibits acceptable stability and reproducibility and the assay results for phospho-p5315 are in good correlation with the known values. This easily fabricated immunosensor provides a new promising tool for analysis of phospho-p5315 and other phosphorylated proteins.  相似文献   

9.
介绍了一种利用金胶的选择性聚集实现信号扩增的超灵敏的电化学方法, 用于人类p53肿瘤抑制剂基因的检测. 在实验中, 根据p53基因的序列设计了能特异性检测p53肿瘤抑制剂基因的二段探针, 在一段探针上固定磁性颗粒以捕获并富集目标基因, 同时在另一段探针上标记金纳米颗粒作为检测信标. 另外, 通过硫代三聚氰酸和金纳米颗粒的自组装作用, 形成金纳米颗粒和硫代三聚氰酸的网状结构, 获得金纳米颗粒的选择性聚集, 实现信号扩增. 用此法检测目标p53野生型DNA, 最低检测限为2.24×10-17 mol/L, 同时进一步研究了该探针对p53野生型和一碱基错配的突变型的选择性.  相似文献   

10.
A sensitive electrochemical biosensor for detecting the sequence of short DNA oligomers is represented. The biosensor is based on a platinum electrode covered a polymerized membrane of conductive monomer N‐[6‐(thien‐3‐yl)acetoxy]‐pyrrolidine‐2, 5‐dione (TAPD). The membrane of TAPD immobilizes a probe DNA on the electrode. The hybridization of the probe with a sequence‐specific DNA in sample solutions is monitored by a self‐synthesized electroactive indicator, which specifically intercalates in the hybrids on the electrode surface. The current signal of the biosensor is proportional to the concentration of the target DNA in samples, and a very low detection limit of 5 × 10?10 mol/L is found. The biosensor has been used to detect the short oligomers containing of HTV‐1 and mycobacterrium nucleotide sequences.  相似文献   

11.
《Analytical letters》2012,45(6):1083-1095
Abstract

A sensitive electrochemical DNA biosensor based on nano-ZnO/chitosan composite matrix for DNA hybridization detection was developed. The Nano-ZnO was synthesized by the hydrothermal method and dispersed in chitosan, which was used to fabricate the modification of the glassy carbon electrode (GCE) surface. The ZnO/chitosan-modified electrode exhibited good biocompatibility and excellent electrochemical conductivity. The hybridization detection was monitored with differential pulse voltammetry (DPV) measurement using methylene blue (MB) as an indicator. The established biosensor can effectively discriminate complementary target sequence and two-base-mismatched sequence, with a detection limit of 1.09 × 10?11 mol L?1 of complementary target.  相似文献   

12.
Engineered nucleic acid probes containing recognition and signaling functions find growing interest in biosensor design. In this paper, we developed a novel electrochemical biosensor for sensitive and selective detecting of Hg2+ based on a bifunctional oligonucleotide signal probe combining a mercury-specific sequence and a G-quadruplex (G4) sequence. For constructing the electrochemical Hg2+ biosensor, a thiolated, mercury-specific oligonucleotide capture probe was first immobilized on gold electrode surface. In the presence of Hg2+, a bifunctional oligonucleotide signal probe was hybridized with the immobilized capture probe through thymine–mercury(II)–thymine interaction-mediated surface hybridization. The further interaction between G4 sequence of the signal probe and hemin generated a G4–hemin complex, which catalyzed the electrochemical reduction of hydrogen peroxide, producing amplified readout signals for Hg2+ interaction events. This electrochemical Hg2+ biosensor was highly sensitive and selective to Hg2+ in the concentration of 1.0 nM to 1 μM with a detection limit of 0.5 nM. The new design of bifunctional oligonucleotide signal probes also provides a potential alternative for developing simple and effective electrochemical biosensors capable of detecting other metal ions specific to natural or artificial bases.  相似文献   

13.
朱旭  李凯  刘林  王建秀  刘又年 《化学学报》2008,66(21):2379-2383
建立了电化学检测表面固定捕获的野生型p53蛋白质的方法. 首先在金电极表面形成巯基化的单链DNA探针/己硫醇(HT)混合自组装膜, 随后巯基化的单链DNA探针与溶液中序列匹配的靶点DNA杂交, 所形成的一致性双链DNA捕获溶液中的野生型p53蛋白质. p53分子表面的半胱氨酸残基采用巯基特异性试剂N-(2-乙基-二茂铁)马来酰亚胺(Fc-Mi)进行衍生. 通过检测二茂铁的电化学信号来指示p53与一致性双链DNA之间的特异性相互作用. p53蛋白质与双链DNA的键合程度取决于双链DNA的序列. 该方法可检测的p53最低浓度为1.33 nmol•L-1.  相似文献   

14.
Reisberg S  Dang LA  Nguyen QA  Piro B  Noel V  Nielsen PE  Le LA  Pham MC 《Talanta》2008,76(1):206-210
An electrochemical hybridization biosensor based on peptide nucleic acid (PNA) probe is presented. PNA were attached covalently onto a quinone-based electroactive polymer. Changes in flexibility of the PNA probe strand upon hybridization generates electrochemical changes at the polymer-solution interface. A reagentless and direct electrochemical detection was obtained by detection of the electrochemical changes using square wave voltammetry (SWV). An increase in the peak current of quinone was observed upon hybridization of probe on the target, whereas no change is observed with non-complementary sequence. In addition, the biosensor is highly selective to effectively discriminate a single mismatch on the target sequence. The sensitivity is also presented and discussed.  相似文献   

15.
We first reported an ultrasensitive hydrogen peroxide biosensor in this work. The biosensor was fabricated by coating graphene–gold nanocomposite (G–AuNP), CdTe–CdS core–shell quantum dots (CdTe–CdS), gold nanoparticles (AuNPs) and horseradish peroxidase (HRP) in sequence on the surface of gold electrode (GE). Cyclic voltammetry and differential pulse voltammetry were used to investigate electrochemical performances of the biosensor. Since promising electrocatalytic synergy of G–AuNP, CdTe–CdS and AuNPs towards hydrogen peroxide was achieved, the biosensor displayed a high sensitivity, low detection limit (S/N = 3) (3.2 × 10−11 M), wide calibration range (from 1 × 10−10 M to 1.2 × 10−8 M) and good long-term stability (20 weeks). Moreover, the effects of omitting G–AuNP, CdTe–CdS and AuNP were also examined. It was found that sensitivity of the biosensor is more 11-fold better if G–AuNP, CdTe–CdS and AuNPs are used. This could be ascribed to improvement of the conductivity between graphene nanosheets in the G–AuNP due to introduction of the AuNPs, ultrafast charge transfer from CdTe–CdS to the graphene sheets and AuNP due to unique electrochemical properties of the CdTe–CdS, and good biocompatibility of the AuNPs for horseradish peroxidase. The biosensor is of best sensitivity in all hydrogen peroxide biosensors based on graphene and its composites up to now.  相似文献   

16.
A sensitive label-free DNA hybridization biosensing platform was fabricated based on the synergistic effect of polyaniline nanotubes (PANInt) and poly-L-lysine (pLys). The composite of pLys and PANInt was coated onto the carbon paste electrode (CPE) to form a uniform and very stable nanocomposite membrane. The pLys in the composite film not only acts as a membrane to retain good electron transfer capability of PANInt even at physiological pH, but also possesses fine biocompatibility for bio-analytes. DNA probes with negatively charged phosphate groups were readily linked to the positively charged pLys surface due to the strong electrostatic affinity. The synergistic effect of PANInt and pLys could significantly enhance the sensitivity of DNA hybridization recognition. The phosphinothricin acetyltransferase (PAT) gene fragment from transgenic corn and the polymerase chain reaction amplification of the terminator of nopaline synthase gene from the real sample of a kind of transgenic soybean were detected by this DNA electrochemical biosensor via label-free impedance method. This stable composite gives convenient permselectivity properties as a transducer material for the design of modern electrochemical impedance biosensor using [Fe(CN)6]3?/4? as an indicator.  相似文献   

17.
The remarkable synergistic effects of the zinc oxide (ZnO) nanoparticles and multi-walled carbon nanotubes (MWNTs) were developed for the ssDNA probe immobilization and fabrication of the electrochemical DNA biosensor. The ZnO/MWNTs/chitosan nanocomposite membrane-modified glassy carbon electrode (ZnO/MWNTs/CHIT/GCE) was fabricated and the ssDNA probes were immobilized on the modified electrode surface. The preparation method is quite simple and inexpensive. The hybridization events were monitored by differential pulse voltammetry (DPV) using methylene blue (MB) as an indicator. As compared with previous MWNTs-based DNA biosensors, this composite matrix combined the attractive biocompatibility of ZnO nanoparticles with the excellent electron-transfer ability of MWNTs and fine membrane-forming ability of CHIT increased the DNA attachment quantity and complementary DNA detection sensitivity. The approach described here can effectively discriminate complementary DNA sequence, noncomplementary sequence, single-base mismatched sequence and double-base mismatched sequence related to phosphinothricin acetyltransferase (PAT) gene in transgenic corn. Under optimal conditions, the dynamic detection range of the sensor to PAT gene complementary target sequence was from 1.0 × 10−11 to 1.0 × 10−6 mol/L with the detection limit of 2.8 × 10−12 mol/L. The polymerase chain reaction (PCR) amplification of nopaline synthase (NOS) gene from the real sample of one kind of transgenic soybeans was also satisfactorily detected with this electrochemical DNA biosensor, suggesting that the ZnO/MWNTs/CHIT nanocomposite hold great promises for sensitive electrochemical biosensor applications.  相似文献   

18.
Electrochemical biosensors have the unique ability to convert biological events directly into electrical signals suitable for parallel analysis. Here we utilize specific properties of constant current chronopotentiometric stripping (CPS) in the analysis of protein and DNA–protein complex nanolayers. Rapid potential changes at high negative current intensities (Istr) in CPS are utilized in the analysis of DNA–protein interactions at thiol-modified mercury electrodes. P53 core domain (p53CD) sequence-specific binding to DNA results in a striking decrease in the electrocatalytic signal of free p53. This decrease is related to changes in the accessibility of the electroactive amino acid residues in the p53CD–DNA complex. By adjusting Istr and temperature, weaker non-specific binding can be eliminated or distinguished from the sequence-specific binding. The method also reflects differences in the stabilities of different sequence-specific complexes, including those containing spacers between half-sites of the DNA consensus sequence. The high resolving power of this method is based on the disintegration of the p53CD–DNA complex by the electric field effects at a negatively charged surface and fine adjustment of the millisecond time intervals for which the complex is exposed to these effects. Picomole amounts of p53 proteins and DNA were used for the analysis at full electrode coverage but we show that even 10–20-fold smaller amounts can be analyzed. Our method cannot however take advantage of very low detection limits of the protein CPS detection because low Istr intensities are deleterious to the p53CD–DNA complex stability at the electrode surface. These data highlight the utility of developing biosensors offering novel approaches for studying real-time macromolecular protein dynamics.  相似文献   

19.
Liu J  Niu J  Yin L  Jiang F 《The Analyst》2011,136(22):4802-4808
A biosensor based on Trametes versicolor laccase (Lac) was developed for the determination of phenolic compounds. The biosensor was prepared by in situ electrospinning of a mixture of polyvinyl alcohol (PVA), Lac, PEO-PPO-PEO (F108) and gold nanoparticles (Au NPs), where F108 was used as an enzyme stabilizing additive and Au NPs was used to enhance the conductivity of the biosensor. Laser confocal scanning microscopy and electrochemical impedance spectroscopy proved that the enzyme was successfully encapsulated into the electrospun nanofibers. Under the optimal conditions, the lowest detection limit was found to be 0.04 μM (S/N = 3) for 2,4-DCP and the highest detection limit was found to be 12.10 μM for 4-CP. The sensitivity of the biosensor obtained in the linear range for chlorophenols followed the sequence 2,4-dichlorophenol (2,4-DCP) > 2,4,6-trichlorophenol (2,4,6-TCP) > 4-chlorophenol (4-CP). The sensing performance for chlorophenols was attributed to the suitable electrochemical interface of PVA/F108/Au NPs/Lac, resulting from biocompatibility, a high surface area-to-volume ratio (10.42 m(2) g(-1)) and superior mechanical properties of the electrospun nanofibers. The biosensor exhibited good repeatabilities of 7.6%, 2.8% and 9.0% (R.S.D.) and reproducibilities of 14.9%, 10.4% and 13.7% (R.S.D.) for 4-CP, 2,4-DCP and 2,4,6-TCP, respectively. Lac retained 65.8% of its initial activity after a 30-day storage period.  相似文献   

20.
Electrochemical monitoring of DNA hybridization related to p53 gene sequence was investigated using genomagnetic assay combined with single walled carbon nanotube (SWCNT) modified pencil graphite electrodes (PGEs). The hybridization was performed either at magnetic beads (MB) surface or in solution. The enhanced guanine signal was obtained using SWCNT‐PGEs compared to one obtained by unmodified PGEs. The selectivity of genomagnetic assay was tested under optimum conditions. The DLs were calculated as 0.88 µM and 0.11 µM for hybridization performed at MB surface and solution, respectively. This selective, practical and cost effective genomagnetic assay combined with SWCNT‐PGEs is reported herein for the first time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号