首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Copper is an essential trace metal that shows a vertical recycled-scavenged profile in the ocean. To help elucidate the biogeochemical cycling of Cu in the present and past oceans, it is important to determine the distribution of Cu isotopes in seawater. However, precise isotopic analysis of Cu has been impaired by the low concentrations of Cu as well as co-existing elements that interfere with measurements by multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). The objective of this study is to develop a simple Cu pre-concentration method using Nobias-chelate PA1 resin (Hitachi High Technologies). This extraction followed by anion exchange, allows precise analysis of the Cu isotopic composition in seawater. Using this method, Cu was quantitatively concentrated from seawater and >99.9999% of the alkali and alkaline earth metals were removed. The technique has a low procedural blank of 0.70 ng for Cu for a 2 L sample and the precision of the Cu isotopic analysis was ±0.07‰ (±2SD, n = 6). We applied this method to seawater reference materials (i.e., CASS-5 and NASS-6) and seawater samples obtained from the northwestern Pacific Ocean. The range of dissolved δ65Cu was 0.40–0.68‰.  相似文献   

2.
对海水中甲基、丁基锡的氢化反应与捕集、色谱分离及其原子化等进行了条件实验和最佳化。采用15cmChromosorbGAW—DMCS载体和OV—3固定液,色谱分离锡的无机、一甲、二甲、三甲、一丁、二丁、三丁基化合物的保留时间分别为40、100、125、139、160、191、228s;在0.200dm3水样中直接测定海水中各形态锡的检出限分别为1.9、1.6、1.8、3.0、1.3、1.4、22.4、ngSn·dm-3;其相应的测量精密度在10%左右。  相似文献   

3.
The isotopic composition of lithium in an NIST SRM 924 Li2CO3, isotopically enriched supplied by ORNL and in seawater has been determined by using thermal ionization mass spectrometry (TIMS) based on the use of lithium phosphate as the ion source. In order to minimize isotopic fractionation, the ion ratio was measured by using a triple filament technique. The method produces a stable, high intensity Li+ ion beam that allows measurement of ng quantities of lithium for several hours. Lithium was separated from sample matrix and further converted to LiOH by employing a two-column ion exchange process. The mass ratio of LiOH to phosphoric acid was nearly stoichiometric in relation to Li3PO4. Lithium isotopes in a reference material supplied by NIST (L-SVEC Li2CO3) was measured to check the reproducibility of the method. A comparison was made between two TIMS units equipped with different types of detectors (a Faraday cup and a secondary electron multiplier). This highly sensitive technique can be applied to determine isotopic composition of Li in enriched isotopes as well as in the examination of low concentration Li reservoirs.  相似文献   

4.
Global status of trace elements in the ocean   总被引:2,自引:0,他引:2  
Trace elements in seawater can be limiting factors of biological productivity, tracers of ocean circulation and biogeochemical processes, and proxies for paleoceanography. The global status of trace elements and their isotopes (TEIs) in the ocean is being explored this decade through an international study of the global marine biogeochemical cycles of TEIs (GEOTRACES). Such an international study has become possible due to recent methodological developments in sampling, preconcentration, and measurement of TEIs. Here, we present an overview of recent methodological developments and initial GEOTRACES intercalibration activities for obtaining data about TEIs that are accurate, precise, and intercomparable.  相似文献   

5.
A new technique for stable lead (Pb) isotope extraction from seawater is established using Toyopearl AF-Chelate 650 M® resin (Tosoh Bioscience LLC). This new method is advantageous because it is semi-automated and relatively fast; in addition it introduces a relatively low blank by minimizing the volume of chemicals used in the extraction. Subsequent analyses by HR ICP-MS have a good relative external precision (2σ) of 3.5‰ for 206Pb/207Pb, while analyses by MC-ICP-MS have a better relative external precision of 0.6‰. However, Pb sample concentrations limit MC-ICP-MS analyses to 206Pb, 207Pb, and 208Pb. The method was validated by processing the common Pb isotope reference material NIST SRM-981 and several GEOTRACES intercalibration samples, followed by analyses by HR ICP-MS, all of which showed good agreement with previously reported values.  相似文献   

6.
Because organotin compounds (OTC) are widely used in many fields of activity, they have become an ubiquitous environmental presence. The presence of organotins in the environment impacts upon food safety, making it important to monitor the levels of organotin pesticides in fruits and vegetables. Nevertheless, only a few studies have been published on organotin speciation in plants. The objective of the present study was to evaluate and optimise a specific procedure based on pressurised solvent extraction (PSE) that is suitable for monitoring organotin content in vegetables. In ASE, solvents are used at elevated temperatures and pressures to increase the rate and efficiency of the extraction process. The results from this procedure were compared to those from the technique usually employed, solid/liquid extraction (SLE) performed in an acidic solvent by mechanical shaking. Three extracting solutions were tested—methanol, ethyl acetate and a mixture of methanol and ethyl acetate—and the mixture was found to give the most quantitative results while preserving the speciation. French bean and lettuce leaves as well as potato tubers were used as the plant materials. These vegetables were considered because they are the vegatables consumed in the most quantities in Europe. The study focuses on trisubstituted OTCs, which are the most toxic tin species. The samples were spiked with four trisubstituted organotins: tributyltin (TBT), triphenyltin (TPhT), tricyclohexyltin (TcHexT) and trioctyltin (TOcT). The influence of the pressure and the temperature of the PSE on the quantitativity of the process and on species preservation was evaluated using the experimental design methodology. The optimised PSE allowed detection limits down to 1–2 ng (Sn) g–1 to be reached. These are higher than those obtained by SLE (0.1–1 ng (Sn) g–1). Although the repeatability is similar for both PSE and SLE (2–12% for triorganotin compounds), this appears to be highly time-dependent in the case of SLE. Comparison with SLE confirms that PSE is an interesting tool for vegetable analysis considering the satisfactory OTC preservation and repeatability obtained for a relatively short extraction duration (only 15 min against 2–12 h for SLE).  相似文献   

7.
Isotope dilution analysis method coupled with flow injection and inductively coupled plasma mass spectrometry (ID-FI-ICP-MS), enabled trace lead concentration in seawater to be determined and the high salt concentration in the matrix, such as Na+, Ca2+ and Mg2+, to be removed on-line. The operational parameters of the FI system including pH for the chelating reaction, concentration of 8-hydroxyquinoline-5-sulfonic acid (8-HQS), sample loading time and injection speed, washing time and speed, eluting acid concentration and eluting speed, and instrumental parameters for ICP-MS were optimized and selected. Accurate results could be achieved because the isotope ratios required can be precisely measured in the range of the eluting peak by means of ID-FI-ICP-MS. The 3σ detection limit was 0.204 ng ml−1. The trace lead concentration of seawater in south Xiamen, China was 0.988 ± 0.039 ng ml−1. The recoveries of spiked Pb standard in seawater and standard reference water (GBW 08607) were 97.9 and 101.0%, respectively, with a relative standard deviation of 0.98%. This method can be used to determine trace lead concentration in high salt matrix samples, and is especially useful when the eluting peaks do not have a Gaussian-distribution.  相似文献   

8.
An integrated analyzer based on the multisyringe flow injection analysis approach is proposed for the automated determination of dissolved oxygen in seawater. The entire Winkler method including precipitation of manganese(II) hydroxide, fixation of dissolved oxygen, dissolution of the oxidized manganese hydroxide precipitate, and generation of iodine and tri-iodide ion are in-line effected within the flow network. Spectrophotometric quantification of iodine and tri-iodide at the isosbestic wavelength of 466 nm renders enhanced method reliability. The calibration function is linear up to 19 mg L−1 dissolved oxygen and an injection frequency of 17 per hour is achieved. The multisyringe system features a highly satisfying signal stability with repeatabilities of 2.2% RSD that make it suitable for continuous determination of dissolved oxygen in seawater. Compared to the manual starch-end-point titrimetric Winkler method and early reported automated systems, concentrations and consumption of reagents and sample are reduced up to hundredfold. The versatility of the multisyringe assembly was exploited in the implementation of an ancillary automatic batch-wise Winkler titrator using a single syringe of the module for accurate titration of the released iodine/tri-iodide with thiosulfate.  相似文献   

9.
A method is described for measurement of freely dissolved copper concentrations in natural water samples using supported liquid membrane (SLM) extraction under equilibrium conditions, a technique denoted equilibrium sampling through membranes (ESTM). For this purpose, 1,10-dibenzyl-1,10-diaza-18-crown-6 as neutral carrier and oleic acid were used in the membrane phase. The main variables optimised were the carrier used to form the metal complexes, the organic solvent used in the membrane, the countercation, pH, the ligand used in the acceptor phase, the extraction time, and the flow rate of the donor phase. After the optimisation process an enrichment factor of 18.5 was obtained. Equilibrium conditions were reached after extraction for 60 min if a flow rate of 1.0 mL min–1 or greater was used. When different ligands such as humic acids, phthalic acid, and EDTA were added to the sample solution, and sample pH ranged from 6 to 8, the results obtained for freely dissolved copper concentrations were in a good agreement with results from speciation calculations performed with Visual Minteq V 2.30, Cheaqs V L20.1, and WinHumic V. The developed technique was applied to analysis of stream and leachate water.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

10.
In this paper we present a procedure allowing total-reflection X-ray fluorescence spectrometry (TXRF) determinations of arsenic in water samples, especially in seawater samples. The procedure consists of an arsenate reduction step (performed by using a l-cysteine solution) followed by a complexation of As+3 with sodium dibenzyldithiocarbamate and solid phase extraction. The new procedure is a modification of a method developed by Prange and allows a simultaneous determination of As together with V, Fe, Ni, Cu, Zn, Pb, and U in seawater by TXRF. The procedure was tested using the Certified Reference Material CASS-4 and was later applied to regular seawater samples collected from the North Sea. The detection limit for arsenic is 10 ng L− 1.  相似文献   

11.
Three major types of pre-concentration methods were evaluated and optimised for the extraction and determination of Cd, Cu, Ni, Pb and Zn from seawater samples. The traditional APDC/DDDC-Freon liquid-liquid extraction method showed excellent results for a multi-elemental analysis. However, the technique is labour consuming, very sensitive to operational conditions, employs environmentally unsafe and expensive solvents and requires large sample volumes. In the solid phase extraction method, the performances of a traditional Amberlite XAD-4 and a novel Dowex Optipore V-493 were evaluated. Application of Dowex Optipore V-493 resin provided better results at low concentrations than the generally used Amberlite XAD-4 resin using low sample volumes. However, the presence of natural organic compounds may decrease extraction efficiency of both resins for Cu. Thus, a pre-treatment with UV irradiation is advantageous for samples with high organic content. Cobalt co-precipitation methods showed good Cu and Ni recoveries, but gave poor results for Cd at low concentrations. In addition, high sample volumes are required. Both solid phase and co-precipitation methods showed unsatisfactory results in determination of Pb. Finally, a summary of methods advantages are given for choosing the most suitable method.  相似文献   

12.
A device for membrane assisted solvent extraction from an aqueous sample to an organic solvent within a micro-vial compatible with a chromatography auto-sampler was used to extract trace amounts of seven polycyclic aromatic hydrocarbons from seawater. The device consisted in an assembly of a volumetric flask containing the sample and a micro-vial containing the organic solvent by means of a screw stopper in which the septum was replaced by a sized piece of a membrane. Extraction conditions (nature of the organic solvent, extraction time, presence of ethanol in the donor phase, ionic content of the donor phase, characteristics of the membrane and volumes of donor and acceptor phases) were studied in order to find the conditions for maximum extraction. Analytical performance characteristics have also been established. The extraction efficiency was between 12.5 and 23%, which implies an enrichment factor value above 40. The repeatability and reproducibility were in the range of 8.6–10.0% and 13–19%, respectively. Detection limits were in the range of 24–39 ng L−1. Nine seawater samples have been studied. Most of the concentrations were under the limits of detection. Naphthalene and phenanthrene contents have been determined in a sample using the method of standard additions, and concentrations 100 and 91 ng L−1, respectively.  相似文献   

13.
Isotope dilution is a useful technique to measure the labile metal pool, which is the amount of metal in soil in rapid equilibrium (<7 days) with the soil solution. This is normally performed by equilibrating soil with a metal isotope, and sampling the labile metal pool by using an extraction (E value), or by growing plants (L value). For Cu, this procedure is problematic for E values, and impossible for L values, due to the short half-life of the 64Cu radioisotope (12.4 h), which makes access and handling very difficult. We therefore developed a technique using enriched 65Cu stable isotope and measurement of 63Cu/65Cu ratios by quadrupole inductively coupled plasma mass spectrometry (ICP-MS) to measure labile pools of Cu in soils using E value techniques. Mass spectral interferences in detection of 63Cu/65Cu ratios in soil extracts were found to be minimal. Isotope ratios determined by quadrupole ICP-MS compared well to those determined by high-resolution (magnetic sector) ICP-MS. E values determined using the stable isotope technique compared well to those determined using the radioisotope for both uncontaminated and Cu-contaminated soils.  相似文献   

14.
A flow system was coupled to a graphite furnace with a platform coated with tungsten-rhodium permanent chemical modifier for in-line separation and preconcentration of copper by employing a minicolumn loaded with 1-(2-tiazolylazo)-2-naphthol (TAN) immobilized on C18-bonded silica fixed in the tip of the autosampler arm. Elution was made by sampling 35 μl of 0.50 mol l−1 HCl with further delivering into a coated platform. Remarkable improvements in both selectivity and sensitivity were observed. Copper(II) was effectively separated from solutions containing up to 20 g l−1 Na+; 10 g l−1 K+, Ca2+ and Mg2+; 1.0 g l−1 Fe3+ and Zn2+. For a sample flowing at 3.0 ml min−1 and a loading of 60 s, the detection limit was estimated as 5 ng l−1 Cu(II) at the 99.7% confidence level, and an enrichment factor of 33 was calculated. Coefficient of variation was estimated as 4% for a 0.30 μg l−1 copper solution (n=20). The W-Rh permanent chemical modifier was used to improve system stability, analytical performance and atomizer lifetime. More than 1500 firings were carried out with the same atomizer without significant variations in sensitivity and precision. On account of the reagent immobilization, its consumption was lower than 0.2 μg per determination. In addition, TAN purification was unnecessary.  相似文献   

15.
A non-suppressed ion chromatography (IC) with inductively coupled plasma mass spectrometry (ICP-MS) has been developed for simultaneous determination of trace iodate and iodide in seawater. An anion-exchange column (G3154A/101, provided by Agilent) was used for the separation of iodate and iodide with an eluent containing 20 mM NH4NO3 at pH 5.6, which reduced the build-up of salts on the sampler and skimmer cones. The influences of competing ion (NO3) in the eluent on the retention time and detection sensitivity were investigated to give reasonable resolution and detection limits. Linear plots were obtained in a concentration range of 5.0–500 μg/L and the detection limit was 1.5 μg/L for iodate and 2.0 μg/L for iodide. The proposed method was used to determinate iodate and iodide in seawaters without sample pre-treatment with exception of dilution.  相似文献   

16.
17.
Different solvents including cyclohexane, dichloromethane, chloroform, toluene, 1-octanol, and methyl isobutyl ketone (MIBK) have been evaluated in extracting copper(II) from nitrate medium by salicylideneaniline. Extracted species differs from solvent to solvent: CuL2 in cyclohexane, toluene, 1-octanol, and methyl isobutyl ketone. However, in dichloromethane or chloroform, there are two complexes of the type CuL2 and CuL2(HL). The extraction constants and percentage of extraction (%E) are calculated for different solvents. Solvent played an important role in recovering copper(II) from the aqueous solution, thus affecting the extraction equilibrium and extraction efficiency. The nonpolar solvent showed better performance than the polar solvent. The maximum extraction efficiency was 85.75% at pH?=?4.5, which was from cyclohexane.  相似文献   

18.
A novel method, combining isotope dilution with standard additions, was developed for the analysis of eight elements (Mn, Fe, Co, Ni, Cu, Zn, Cd and Pb) in seawater. The method requires just 12 mL of sample and employs an off-line pre-concentration step using the commercially available chelating resin Toyopearl AF-Chelate-650M prior to determination by high resolution inductively coupled plasma magnetic sector mass spectrometry (ICP-MS). Acidified samples were spiked with a multi-element standard of six isotopes (57Fe, 62Ni, 65Cu, 68Zn, 111Cd and 207Pb) enriched over natural abundance. In addition, standard additions of a mixed Co and Mn standard were performed on sub-sets of the same sample. All samples were irradiated using a low power (119 mW cm−2; 254 nm) UV system, to destroy organic ligands, before pre-concentration and extraction from the seawater matrix. Ammonium acetate was used to raise the pH of the 12 mL sub-samples (off-line) to pH 6.4 ± 0.2 prior to loading onto the chelating resin. The extracted metals were eluted using 1.0 M Q-HNO3 and determined using ICP-MS. The method was verified through the analysis of certified reference material (NASS-5) and the SAFe inter-comparison samples (S1 and D2), the results of which are in good agreement with the certified and reported consensus values. We also present vertical profiles of the eight metals taken from the Bermuda Atlantic Time Series (BATS) station collected during the GEOTRACES inter-comparison cruise in June 2008.  相似文献   

19.
Knowledge of the detection capabilities of speciation techniques, gained by calculation and computer simulation, can be combined with experimental measurements to arrive at an understanding of trace metal speciation which is less dependent on operational factors than other approaches. Examples of the application of this means of measuring copper speciation to samples from the Humber Estuary are given. Although concentrations of total dissolved copper can approach the estuarine Environmental Quality Standard value of 5 μg 1?1, there is evidence for a substantial excess of complexing ligands at all locations except the outer estuary, where copper levels are much reduced by dilution. Dissolved copper is therefore present almost totally in the form of organic complexes. The range of different types of ligand is also assessed. In sea water, there appears to be a range of ligands of differing affinities for copper; the complexing capacity ranges from 20 nM [conditional stability constant of the copper complex (K′) > 1014] to 70 nM (K′) > 108). For estuarine samples, ligands with a high affinity for copper seem to be predominant and the overall complexing capacity rises to over 200 nM. In freshwater samples, it is likely that the potential for varying combinations of weak and strong complexes will depend on the water quality, but a capacity to complex over 200 nM copper is not unusual.  相似文献   

20.
Dwinna Rahmi 《Talanta》2007,72(2):600-606
The multielement determination of trace metals in seawater was carried out by inductively coupled plasma mass spectrometry (ICP-MS) with aid of a down-sized chelating resin-packed minicolumn for preconcentration. The down-sized chelating resin-packed minicolumn was constructed with two syringe filters (DISMIC 13HP and Millex-LH) and an iminodiacetate chelating resin (Chelex 100, 200-400 mesh), with which trace metals in 50 mL of original seawater sample were concentrated into 0.50 mL of 2 M nitric acid, and then 100-fold preconcentration of trace metals was achieved. Then, 0.50 mL analysis solution was subjected to the multielement determination by ICP-MS equipped with a MicroMist nebulizer for micro-sampling introduction. The preconcentration and elution parameters such as the sample-loading flow rate, the amount of 1 M ammonium acetate for elimination of matrix elements, and the amount of 2 M nitric acid for eluting trace metals were optimized to obtain good recoveries and analytical detection limits for trace metals. The analytical results for V, Mn, Co, Ni, Cu, Zn, Mo, Cd, Pb, and U in three kinds of seawater certified reference materials (CRMs; CASS-3, NASS-4, and NASS-5) agreed well with their certified values. The observed values of rare earth elements (REEs) in the above seawater CRMs were also consistent with the reference values. Therefore, the compiled reference values for the concentrations of REEs in CASS-3, NASS-4, and NASS-5 were proposed based on the observed values and reference data for REEs in these CRMs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号